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 ABSTRACT 

     In this thesis we introduce some main results from the theory of convex functions and 

Jensenôs and related Inequalities. Also we present a detailed study of an important type of 

inequalities called Steffensen's Inequality . 

 

     The aim of the this thesis is to provide a systematic study of some but important integral 

inequalities with a focus on Steffensen's type, which find numerous applications in special 

functions, special means and other fields in mathematics. 

 

     Steffensen's inequality deals with the comparison between integrals over a whole interval 

[ , ]a b  and integrals over a subinterval of [ , ]a b . Many mathematicians presented scientific 

papers in this field, for example, Mercer, Pecaric, Hayashi, Wu, Srivastava and Cerone.                                                                          

 

     We study some generalizations belong to these scientists, and we give  good contributions as 

applications for special functions, special means and integral mean and we also study new 

generalizations of Steffensen's inequality. 

 

     We focus on the concept of convex sets, and convex and concave functions. Also we offer 

some basic inequalities associated with convex functions. 

  

     We study Jensen and Jensen-Steffensen inequalities, and offer some generalization of 

Steffensen's inequality.  We focus on the work of Pecaric and WuïSrivastava and give some new 

generalizations. Also we offer some new extensions for Cerone's generalizations which            

were obtained by using the ideas of Pecaric. 
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Ј϶ЯвЮϜ ϣПЯЮϝϠ ϣтϠϼЛЮϜ 

  " ϣуЯвϝЫϧЮϜ ϤϝзтϝϡϧгЮϜ ЍЛϠм ϣϠϹϳгЮϜ ЬϜмϹЮϜ Ьнϲ" 

     ǑƼ ǉîǋ ƗơāïõǕå ôïƶƙƪǈ ôƶȺ ƝƑƓƙǈǃå ƗȻƪȻƑïǃå ǃƗɂïöǈ ƗȺíơǆǃå ýåāíǃå ÿƪǈƞ ƗǈǒƓȺƙǆā èƓǈǒƓȺƙǆǃåā èåî ƗǄƮǃå .Ɠǆɜ 
þíǀǈ Ɨƪåïí ƗǄƮƽǆ ǃ÷āǈ þǌǆ ÿǆ èƓǈǒƓȺƙǆǃå ǏǆƪȻ ƗǈǒƓȺƙǆ ÿƪǈƽƙƪ.  þƙ éǒơȻíǀƙþ Ɨƪåïí ƗȻƞǌǈǆ ôƶȺǃ ƗȻǄǆƓǂƙǃå èƓǈǒƓȺƙǆǃå ƴǆ 
ðǒɜïƙǃå ǏǄƵ ÷āǈ Üÿƪǈƽƙƪ Ǒƙǃåā íƞƙ íǒíƶǃå ÿǆ èƓǀȻƕõƙǃå ǑƼ ýåāíǃå ÜƗƮƓƤǃå Ɠǋïǒƹā ƗƮƓƤǃå èƓõƪāƙǆǃå ÿǆ èǙƓƞǆǃå ǑƼ 

èƓȻưƓɂïǃå. 
 

      ɆǆƓƶƙƙƗǈǒƓȺƙǆ  ÿƪǈƽƙƪƴǆ ƗǈïƓǀǆǃå ÿǒƕ èǚǆƓǂƙǃå ǏǄƵ ƗǄǆƓǂǃå çïƙƽǃå ƙƼ ǏǄƵ èǚǆƓǂƙǃåāƗȻƑðƞ çï .éǒơ þíƿ íǒíƶǃå ÿǆ 
ßƓǆǄƶǃå éƓơȺá ƗȻǆǄƵ ǑƼ åîǋ ÜýƓƞǆǃå :Ɇƛǆ Üïƪïǒǆ ÜüɂïƓɜȻƕ ÜǑƬƓȻƓǋ ǋÜāā ƓƼƓƙƪƓƽɂïƪ  ÿāïǒƪ ā. íǀǃā Ɠǈǆƿ Ɨƪåïíƕ ôƶȺ 
èƓǆȻǆƶƙǃå ƗƮƓƤǃå ßǙâǌƕ ā ßƓǆǄƶǃå üǃîɜ èƓǀȻƕõƙ ɆǆƶȺ Ɠǈǆƿ çíǒíƞ å ýƓƞǆ ǑƼýåāíǃ ƗƮƓƤǃå èƓõƪāƙǆǃåā ƗƮƓƤǃå  Ɋƪāƙǆǃåā
ǆƓǂƙǃåǑǄ ā Ɠǈƪïí èƓǆȻǆƶƙ çíǒíƞ ƗǈǒƓȺƙǆǃ ÿƪǈƽƙƪ  ÿāïǒƪ ā. 
 

     çïƶǀǆǃåā ƗȺíơǆǃå ýåāíǃåā ƗȺíơǆǃå èƓƵāǆƞǆǃå ǏǄƵ ðǒɜïƙǃå þƙÜ  ýåāíǃƓȺ ƗõȺƙïǆǃå ƗȻƪƓƪǕå èƓǈǒƓȺƙǆǃå ôƶȺ ƓǈưïƵā
ÿƪǈƞ ƗǈǒƓȺƙǆā ÿƪǈƞ ƗǈǒƓȺƙǆ Ɠǈƪïí .ƗȺíơǆǃå- Ɠǈðɜï .ÿƪǈƽƙƪ ƗǈǒƓȺƙǆǃ èƓǆȻǆƶƙǃå ôƶȺ ƓǈưïƵā ÿƪǈƽƙƪ ǏǄƵ ƗǃƓƪïǃå ǉîǋ ǑƼ

 Ǒƙǃåā ÿāïǒƪ èƓǆȻǆƶƙǃ çíǒíƞǃå èƓƶƪāƙǃå ôƶȺ ƓǈưïƵ ĄƓưȻá Üçíǒíƞ èƓǆȻǆƶƙ ƓǈǒõƵáā ƓƼƓƙƪƓƽɂïƪā āǋā üïɜȻƕ èƓǆȻǆƶƙ
.üïɜȻƕ çïɜƼ þåíƤƙƪƓȺ ƓǌǒǄƵ ƓǈǄƮơ 
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Introduction  

      Mathematical analysis is that branch of mathematics which includes the theory of 

differentiation, integration, measure, limits, and convex functions. 

     Convex functions, is fundamental as positive functions or increasing functions and became an 

important point in the search field of the study of mathematical analysis.  

     Inequalities are at the heart of mathematical analysis and it has become an important tool in 

mathematical analysis until we became we look at it as stand-alone branch of modern 

mathematics since the beginning of the 20
th
 century. The book "Inequalities" [9] by Hardy, 

Littlewood and Pólya was the pioneering work, and other books (see e.g. [13], [16]) have a great 

value in this area. We focus our attention on the integral inequalities of Steffensen's type. 

 

     By the beginning of the 21
th
 century, the field of mathematical inequalities has continued to 

develop rapidly. Inequalities are one of the most important instruments in many branches of 

mathematic such as functional analysis, theory of differential and integral equations, probability 

theory, etc. They are also useful in mechanics, physics and other sciences. 

 

     Steffensen's inequality was established in 1918 (see [26]), and it lies in the core of integral 

inequalities, which can be used for dealing with the comparison between integrals over a whole 

interval [ , ]a b  and integrals over a subinterval of [ , ]a b . Mathematicians like Mercer, Pecaric, 

Hayashi, Wu, Srivastava and Cerone have presented many papers in this field. 

 

     Johan Frederik Steffensen (1873 ï1961) was a Danish mathematician and statistician. He 

was a professor of science at the University of Copenhagen from 1923 to 1943. He has many 

valuable scientific publications. Steffensen's inequality was named after him. 

 

     In this thesis, we present new extensions and generalizations for Steffensen's inequality 

together with some valuable applications related to special means, special functions, and integral 

mean. 

 

https://en.wikipedia.org/wiki/Danish_people
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/Steffensen%27s_inequality
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     The aim of the this thesis is to provide a systematic study of the convex functions and it's 

relation with some but important integral inequalities, namely, Steffensen's type, which find 

numerous applications in some fields of mathematics. 

 

 

     In chapter one, we introduce some important and essential facts, definitions and theories 

which are needed to understand the material of this thesis. This chapter aims to be a thorough 

introduction to contemporary convex function theory. We study the concept of a convex set, and 

convex and concave functions with some properties and examples. 

     Also we offer some basic inequalities associated with convex functions. We study Jensen and 

Jensen-Steffensen inequalities. Moreover, we offer some famous special means to be used in 

applications. Jensen's inequality is one of the most important inequalities in mathematics. We 

present two forms of Jensen's inequality, the discrete form (1.6.1) and the integral form (1.6.4). 

 

 

 

     In chapter two, we  focus on Steffensen's inequality and offer some generalization of 

Steffensen's inequality. Moreover, we study Mercer's results regarding Steffensen's inequality 

and the relation between Steffensen's and Jensen's inequalities. At the end, we give new 

applications for special functions related to  the results of this chapter. 

     In the Theorem 2.2.1 we introduce the original form of Steffensen's inequality and give some 

remarks and examples to show how we can use and apply the inequality in Theorem 2.2.1. In 

(2.3.1) Hayashi gave a generalization of Steffensen's inequality and it's applications. In Theorem 

2.4.1 Mercer gave another generalization of Steffensen's inequality, but in[11] Z.Liu claims that 

there is an error in Mercer's result (2.4.1).  Theorems 2.4.2, 2.4.3, and 2.4.4 are provided so as to 

correct the above mentioned error and to give some extensions of Steffensen's inequality.  

     In Theorems 2.5.2 and 2.5.3 we focus on the relationship between Steffensen's and  Jensen's 

inequalities through the definition of convex function. Finally, we give a new applications for 

Special Functions related to generalizations of Steffensen's inequality, the importance of 

inequality (2.6.5) is in the comparison between the two famous types of special functions in 

mathematics using the Steffensen's inequality. 
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In chapter three, we introduce several interesting results on generalizations of Steffensenôs 

integral inequality. We focus on the work of Pecaric and WuïSrivastava and give some new 

generalizations. Moreover, we study weaker condition for this generalizations. At the end, we 

give new applications for special means.  

     In Theorems 3.2.1 and 3.2.2 Pecaric gave another generalization of Steffensenôs inequality 

which is very important in our study. Theorems 3.3.1, 3.3.2 and 3.3.3 provides generalizations to 

the classical Steffensen's inequality. Using Theorem 3.3.2, Pecaric, et al obtained sharpened and 

generalized versions of Theorems 3.2.1 and 3.2.2. This versions are given in corollaries 3.3.5 and 

3.3.6.   

     In Theorems 3.4.1 and 3.4.2 we study weaker conditions for the parameter l in Pecaric's 

generalizations. In corollaries 3.4.1 and 3.4.2 we obtain weaker conditions for the parameter l 

in Steffensenôs inequality, we give some examples to explain the results introduced in Theorems 

3.4.1 and 3.4.2. Application 3.5.1 is a new application for the special means in the case of 

convex functions. 

 

 

 

In chapter four,  we introduce several new interesting results on improvements of Steffensenôs 

integral inequality. Also we offer some new extensions for Cerone's generalizations which were 

obtained using the ideas of Pecaric [23]. We also give a new applications for integral mean.              

     In Theorem 4.2.1, Cerone gave another generalization of Steffensenôs inequality which is 

very important in this chapter.  Theorem 4.2.2 is another extension of Theorem 4.2.1 in case 

1, 2, 3i =  and we think it is new. We use Lemma 4.2.2 for recapturing the classical Steffensen's 

inequality (2.2.1). Theorem 4.2.3 is an extension to Theorem 4.2.2  for the case 1, 2, . . . ,i n=  

and we believe that it is a new result. 

     To generalize Ceroneôs result for the function f k we need lemma 4.3.1. Theorem 4.3.1 is 

more generalization of Ceroneôs result for the function ,f k  and also in this theorem we obtain               

a Mercerôs generalization (Theorem 2.4.2 and 2.4.3) using Remarks 4.3.1.  

     The results in  theorem 4.3.2 are extensions to those in Theorem 4.3.1 for 1, 2, 3i = , and 

they are new results. Theorem 4.3.3  is an extension to Theorem 4.3.2 to the case 1, 2, . . . ,i n=  

and it gives more new results to this subject, and Theorem 4.2.3 is a consequence of        

Theorem 4.3.3 by taking ( ) ( ) 1h t k t= =. Finally, In section 4.4, we apply the integral mean on 

the extensions of Cerone's generalizations of the classical Steffensenôs integral inequality and 
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some new results are obtained. In Theorems 4.4.1 Cerone gave another generalization of 

Steffensenôs inequality using the integral mean which is very important in this section. In 

Theorem 4.4.2 we extend the results in Theorem 4.4.1 to the case 1, 2, 3i = . Theorem 4.4.3 

provides a new extension to Theorem 4.4.2 to the case 1,2, . . . , .i n=  
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CHAPTER 1 

Preliminar ies and Concepts of Convexity 
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1.1 Preliminaries 

Definition 1.1.1 (Lipschitz Condition) [24, p.4] 

A function  : nf E ­  is said to satisfy a Lipschitz condition on E  if there is a positive 

constant L such that for all ,x y EÍ   

() ()f x f y L x y- ¢ - 

where x  denotes the norm in 
n

and E  is an open subset of  
n

. The constant  L is called the 

Lipschitz constant. 

 

Definition 1.1.2 (Absolutely Continuous) [25, p.104] 

A function  :[ , ]f a b ­  is said to be absolutely continuous on [ , ]a b  if given > 0e , 

> 0d$  such that if ( ){ }
1

,
n

i i
i

x y
=

 is a finite pairwise disjoint family of subintervals of [ , ]a b  

with ( ) ( )
1 1

then .< , <
n n

i i i i
i i

y x f y f xd e
= =

- -ä ä    

 

Definition 1.1.3 [24, p.2] 

We say that the function :f I ­  is affine if it is of the form  ( ) on ,f x mx b I= +                                  

m, b are constant. 

 

Definition 1.1.4 [13, p.8] 

Let  f   be a real-valued function defined on an interval .I Ë  A function  f  is called 

nondecreasing on I  if for each pair of different points 1 2, ,x x IÍ  the condition  

     
( ) ( ) ( )( )1 2 1 2 0x x f x f x- - ² 

is valid, and increasing if the following strict inequality  

     ( ) ( ) ( )( )1 2 1 2 > 0x x f x f x- -   

holds. 
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Definition 1.1.5 [13, p.8] 

Let  f   be a real-valued function defined on an interval .I Ë  A function  f  is called 

nonincreasing on I if for each pair of different points 1 2,x x IÍ , the condition 
          

( ) ( ) ( )( )1 2 1 2 0x x f x f x- - ¢  

is valid, and decreasing if the following strict inequality  

 
    

( ) ( ) ( )( )1 2 1 2 < 0x x f x f x- -   

holds. 

 

Remark 1.1.4 (Monotone Function) [13, p.8] 

A function  f  is called a monotone function if it is either a nondecreasing (increasing) or           

a nonincreasing (decreasing) function. 

 

     Now, we offer some famous special means(see [3]) 

For , 0a b>  we recall the means 

        
( , ) ,

2
A

a b
a b

+
=                                 arithmetic mean,   

        
( , ) ,G a b ab=                                  geometric mean,  

        

2
( , ) ,H

ab
a b

a b
=
+

                              harmonic mean, 

        

( , ) ,
ln ln

L
b a

a b
b a

-
=

-
                        logarithmic mean ( )a b¸ ,    

        

1
1 1

( , ) ,
( 1)( )

p
p p

pL
p

b a
a b

b a

+ +è ø
é ù
ê ú

-
=

+ -
          generalized log-mean ( ), 1, 0.pa b¸ ¸-     
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1.2   Convex Sets 

 

     The concept of a convex set is a simple one. A set in space is convex if whenever it contains 

two points, it also contains the line segment joining them. See Fig1.1. In Fig1.1 (a), the set is 

convex, because the line segment joining every pair of points in the set lies entirely in the set.  

In Fig1.1 (b), the set is not convex, because the line segment joining the points x and y does not 

lie entirely in the set. In Fig1.1 (c)  ADBFE  &  ACBD are convex, but  ACBFE  is not convex. 

 

 

     For each point a on the line through distinct points x and y of  n , there exists  a unique 

scalar l such that    

( ) ( )1a y x y x yl l l= + - = + -. 

 

 

     See Fig1.2 . Conversely, each point a of this form lies on the line through x and y. This the 

line through x and y is the set ( ){ 1 : }x yl l l+ - Íwhich can also be written in the 

symmetrical form  { x y: 1}l m l m+ + =. 
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We note that the subset  

( ){ 1 : 0 1} { x y : , 0, 1}x yl l l l m l m l m+ - ¢ ¢ = + ² + = 

of the line through x and y is the line segment joining x and  y. A fact which will be needed 

when we define a convex set[27, pp.4-5]. 

 

 

Definition 1.2.1 

     A set S  in 
n  is said to be convex if for each ,x y SÍ , the line segment ( )1 ,x yl l+ -

 

[0,1],l" Í   belongs to S . See Fig1.3. If 1m l= -, then the line segment becomes 

such thatx y  1.l m l m+ + = 

 

  

 

 

 

 

 

 

 

 

 

 

Remark 1.2.1 [27, p.51] 

If ,x yÍ  and [0, 1]lÍ , then ( )1x yl l+ -  is said to be  a convex combination. 

 

 

Example 1.2.1  Consider the interval  [ , ]a b Ë . We show that this interval is a convex set. 

Let , [ , ]x y a bÍ  be two arbitrary elements. We need to prove that ( )1 [ , ]x y a bl l+ - Í  

[0, 1]l" Í . Select an arbitrary in [0, 1]l . Since , [ , ],x y a bÍ  then ,x y b¢ . Since 

[0, 1]lÍ , it follows that ( )1x y bl l+ - ¢ and similarly ( )1x y al l+ - ². Since , xl  and 

y were arbitrarily chosen, then ( ) and1 [ , ] , [ , ] [0, 1]x y a b x y a bl l l+ - Í " Í " Í. ƴ 
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Properties of Convex Sets [27, pp.50-51] 

Let 1 2, andS S S  be convex sets belongs to . Then, the following sets are also convex: 

i- The intersection  1 2S SÆ . 

ii - The sum 1 2S S+ .  

iii - The translated set , aS a Í+ .  

iv- The scaled set , ttS Í .    

 

Remark 1.2.2  The union of convex sets is not necessarily convex. To show that let us give an 

example. Consider the line segments A and B in the Euclidean 2-space where A with the 

endpoints and(0, 0) (2, 2), and B with the endpoints and(2, 2) (4, 0). Both A and B are 

convex. Also and(1, 1) (3, 1) A BÍ Ç , but only the endpoints of the line segment 

and(1, 1) (3, 1) are in the union, while the pointe in between and(1, 1) (3, 1) are not in the 

union, so that the union is not convex. ƴ  

 

1.3   Convex and Concave Functions 

 

Definition 1.3.1 (One-Variable Convex Functions) [17, p.1] 

(a) Let I  be an closed interval in . Then :f I ­  is said to be convex if for all 

,x y IÍ  and all [0, 1]lÍ ,  

                     
( ) ( )(1 ) ( ) 1 ( )f x y f x f yl l l l+ - ¢ + -                                   (1.3.1) 

holds. If (1.3.1)is strict for all x y̧ and (0, 1)lÍ ,then f is said to be strictly 

convex. 

(b) If  the inequality in (1.3.1) is reversed ,then f  is said to be concave. If  it is strict for all 

x y̧  and (0,1)lÍ , then f  is said to be strictly concave. That is, f  is concave if 

f-  is convex.  

 

The geometrical meaning of convexity [15, p.7]     

     The convexity of a function :f I ­  means geometrically that the points of the graph of 

f are under (or on) the chord joining the endpoints( ) ( )and ,( ), ( ) ,x f x y f y  for all 

, , < .x y I x yÍ  (i.e. The simple geometric interpretation of (1.3.1) is that the graph of  f  

lies below its chords).                                                                                                                                                                                       
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It is clear from Fig1.4 that :  Slope Slope SlopePQ PR QR¢ ¢                                     (1.3.2) 

 

Theorem 1.3.1[27, p.194]  Let :f I ­  be a convex function and let , ,x y z IÍ  satisfy 

< < .x z y Then 

                             
( ) ( ) ( ) ( ) ( ) ( )f z f x f y f x f y f z

z x y x y z

- - -
¢ ¢

- - -
  

Proof.  We express z as a convex combination of x and y as follows

 

 

it is true, since 1
y z z x y z z x

z x y
y x y x y x y x

å õ
æ ö
ç ÷

- - - -
= + + =
- - - -

                                                            

By the convexity of  f ,  ( ) ( ) ( )z x y
y z z x

f f f
y x y x

- -
¢ +
- -

.   

Then  ( ) ( ) ( )( ) ( ) ( )z x yy x f y z f z x f- ¢ - + -  

Now,    ( ) ( ) ( ) ( )( ) ( ) ( )z xy x f f y x f yx x fzè øê ú- - = - - -   

( ) ( ) ( )( ) ( ) ( )x y xy z f z x f y x f¢ - + - - -   

( ) ( )[( ) ]y xz x f y z y x f= - - - + + -   

( ) ( )( ) ( )y xz x f z x f= - - -   

( ) [ ( ) ( )]z x f y f x= - -   
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Thus  
( ) ( ) ( ) ( )f z f x f y f x

z x y x

- -
¢

- -
. 

Similarly 
( ) ( ) ( ) ( )

.
f y f x f y f z

y x y z

- -
¢

- -
 ƴ 

 

Example 1.3.1  Let  :f ­ defined by 
2( ) .f x x=  Then ( )f x  is convex. To show that, 

we can use (1.3.1) directly: 

Let 1 ,l m- = then (1.3.1) becomes 

( ) () ()such that with, 0 1f x y f x f yl m l m l m l m+ ¢ + ² + =. 

We need to show () () ( ) 0f x f y f x yl m l m+ - + ². 

Now    () () ( )f x f y f x yl m l m+ - +   

            
 

( )
22 2x y x yl m l m= + - +  

   ( )2 2 2 2 2 22x y x x y yl m l lm m= + - + +  

            
2 2 2 2 2 2 2x x y y x yl l m m lm= - + - -  

   
2 2(1 ) (1 ) 2x y x yl l m m lm= - + - -  

            
2 2 2x y x ylm lm lm= + -  

   ( )2 22x x y ylm= - +  

            ( )
2

0x ylm= - ². 

Thus 
2( )f x x= is a convex function. ƴ 

Remark 1.3.1[17, p.1] For  , , , 0, 0,x y I p q p qÍ ² + >then (1.3.1) is equivalent to 

                       
() ()p f x q f ypx qy

f
p q p q

å õ
æ ö
ç ÷

++
¢

+ +
                                                     (1.3.3) 

where   , 1
p q

p q p q
l l= - =

+ +
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If 1,p q= = then (1.3.3) becomes  

                                    
() ()

2 2

f x f yx y
f
å õ
æ ö
ç ÷

++
¢                                                   (1.3.4) 

 

Definition 1.3.2 [17, p.5]  A function  :[ , ]f a b ­  is called convex in the Jensen sense, or 

J-convex, or mid-convex, on [ , ]a b  if for all points , [ , ]x y a bÍ  the inequality (1.3.4) holds. 

A J-convex function  f  is said to be strictly J-convex if for all pairs of points ( ), , ,x y x y¸
 

strict inequality holds (1.3.4). 

 

Remark 1.3.2[17, p.6]  J. L. W. V. Jensen (1905, 1906) was the first to define convex functions 

using inequality (1.3.4) and to draw attention to their importance. 

 

Definition 1.3.3 [17, p.7]  A function : ,f I ­  I  an interval in ,  is said to be              

log-convex, or multiplicatively convex if log f  is convex, or equivalently if for all ,x y IÍ   

and all [0, 1]lÍ   

                                  ( )( ) () ()
1

1f x y f x f y
l l

l l
-

+ - ¢                                           (1.3.5) 

It is said to be log-concave if the inequality (1.3.5) is reversed. 

 

Theorem 1.3.2 [24, p.16] Let  : and :f I g J­ ­  where range ( ) . f JÌ  If 

andf g  are convex functions and g  is increasing, then the composite function g fo  is 

convex on I . 

Proof. For  and, [0, 1]x y I lÍ Í  

 ( )( ) ( )1 ( ) 1 ( )g f x y g f x f yl l l lè ø è ø
ê úê ú

+ - ¢ + -  

() ( ) ()1g f x g f yl lè ø è ø
ê ú ê ú¢ + -   

( )( )( ).1g f g fl o l o= + -  ƴ 
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Remark 1.3.3[17, p.7]  Since ( ) ( )exp[log ],x xf f=
 
it follows from Theorem1.3.2  that             

a log-convex function is convex (but not conversely). In general, 
()

( )
f x

xg e=   is log-convex     

if ( )f x is convex function. Since 
()

( ) ,
f x

xg e= then 
()

.( ) ( )log log
f x

x f xg e == Thus  

( ) .is convexlog xg  For example, 
2

( )xf x=  which is convex function with 
()

( )
f x

xg e= , then 

2

( )
x

xg e=   is log-convex. 

 

Theorem 1.3.3[13, p.16]  A function  :[ , ]f a b ­  is convex on  [ , ]a b  if and only if          

for any three points ( )1 2 3 1 2 3 from, , < < [ , ]x x x x x x a b  the following inequality holds 

( )
( )
( )

( ) ( )( ) ( )( ) ( ) ( )
1 1

2 2 3 2 1 1 3 2 2 1 3

3 3

1.3.6

1

1 0

1

x f x

x f x x x f x x x f x x x f x

x f x

= - + - + - ²

  

Proof.  Putting in (1.3.1)  ( )1 2 3, 1 ,x x x y x y xl l= + - = = , we have 

( ) ( )( ) ( )2 1 31f x f x f xl l¢ + -
 
 with taking 3 2

3 1

x x

x x
l

-
=
-

 and 2 1

3 1

1 ,
x x

x x
l

-
- =

-
 after 

rearranging, we get (1.3.6).  

Conversely, putting in (1.3.6) ( )1 2 3, 1 ,x x x y x y xl l= + - = = with the condition < ,x y  

we get    

( )( ) () ( ) ( )( ) ( )( ) ()1 1 1 0y x y f x x y f x y x y x f yl l l l l l- + - + - + - + + - - ² 

( ) () ( ) ( )( ) ( ) ()1 0y x f x x y f x y x y y x f yl l l l l- + - + - + + - - ² 

( ) ( )( ) ( ) () ( )( )( ) ()1y x f x y y x f x y x y x f yl l l l- + - ¢ - + - - + - 

( )( ) () ( ) ()1 1f x y f x f yl l l l+ - ¢ + -  which is (1.3.1). 

( )1 2 3If > , then putting , 1 , , we getx y y x x y x x xl l= + - = =  

( )( ) () ( ) ( )( ) ( )( ) ()1 1 1 0x x y f y y x f x y x y y f xl l l l l l- + - + - + - + + - - ² 
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( ) () ( ) ( )( ) ( ) ()1 0x x y y f y y x f x y x y f xl l l l l- + - + - + - + - ² 

( ) ( )( ) ( ) () ( )( )( ) ()1x y f x y x y f x x y x y f yl l l l- + - ¢ - + - - + - 

( )( ) () ( ) ()1 1f x y f x f yl l l l+ - ¢ + -  which is (1.3.1). ƴ 

 

 Remarks 1.3.4[17, p.2] 

(a) (1.3.6) is equivalent to 

( ) ( ) ( )3 2 2 1
2 1 3

3 1 3 1

x x x x
f x f x f x

x x x x

- -
¢ +

- -
  

         where 3 2

3 1

x x

x x
l

-
=
-

and 2 1

3 1

1
x x

x x
l

-
- =

-
such that ( )1 1l l+ - =and ( )1 3 2.1x x xl l+ - =                           

(b) From (1.3.6) divide by ( )( )( )1 2 2 3 1 3 ,x x x x x x- - -  we obtain  

( )
( )( )

( )
( )( )

( )
( )( )

31 2

1 2 1 3 2 3 2 1 3 1 3 2

0
f xf x f x

x x x x x x x x x x x x
+ + ²

- - - - - -
.  

(c) f is both convex and concave if and only if () for some ,f x x c ca a= + Í. 

  

1.4  Some Properties of Convex Functions 

Remark 1.4.1[24, p.3] A function convex and finite on a closed interval [ , ]a b  is bounded from 

above by () (){ },max ,M f a f b=
 
since for any ( )1z a bl l= + -  in the interval, 

 

                   
() ()( ) () ( )1 1 .f z f a f b M M Ml l l l¢ + - ¢ + - =                             (1.4.1)           

The function  f  is also bounded from below as we see by writing an arbitrary point in the form 

.
2

a b
t

å õ
æ ö
ç ÷

+
+  Then by (1.3.4) with and ,

2 2

a b a b
x t y t
å õ å õ
æ ö æ ö
ç ÷ ç ÷

+ +
= + = -for some real number t,  

            
1 1

2 2 2 2 2

a b a b a b
f f t f t
å õ å õ å õ
æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷

+ + +
¢ + + -   
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           2
2 2 2

a b a b a b
f t f f t
å õ å õ å õ
æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷

+ + +
+ ² - -. 

Using M as the upper bound 

         
2

a b
f t M
å õ
æ ö
ç ÷

+
- - ² - 

So 2 .
2 2

a b a b
f t f M m
å õ å õ
æ ö æ ö
ç ÷ ç ÷

+ +
+ ² - =                                                              (1.4.2) 

 From (1.4.1) and (1.4.2),we say that f is bounded. ƴ 

 

Theorem 1.4.1[24, p.4]  If   :f I ­  is convex, then f satisfies a Lipschitz condition on any 

closed interval [ , ]a b  contained in the interior of .I Io
 Consequently, f is absolutely 

continuous on[ , ]a b  and continuous on .I o  

Proof.  Choose > 0e  so that anda be e- - belong to ,I  and let m and M  be the lower and 

upper bounds for  f  on [ , ].a be e- +
 
If  andx y  are distinct points of [ , ]a b ,set  

 ( ),
y x

z y y x
y x y x

e
l
e

-
= + - =

- + -
 

then ( )[ , ], 1 ,z a b y z xe e l lÍ - + = + - and we have 

( )( ) ( ) 1 ( ) ( ) ( ) ( ).f y f z f x f z f x f xl l lè øê ú¢ + - = - + 

Hence  

( ) ( )
( )

where( ) ( ) < ,
y x M m

f y f x M m M m K y x Kl
e e

- -
- ¢ - - = - = . 

Since this is true for any , [ , ],x y a bÍ
 
we conclude that ( ) ( )f y f x K y x- ¢ -as desired. 

Now, we recall that f is absolutely continuous on [ , ]a b  if corresponding to any > 0,e  we 

can produce a > 0d  such that for any collection ( ){ }
1

,
n

i ia b  of disjoint open subintervals of 

[ , ]a b  with ( ) ( )
1 1

< , < .
n n

i i i i
i i

b a f b f ad e
= =

- -ä ä  
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Clearly the choice 
k

e
d=  meets this requirement, since 

( ) ( )
1 1 1

< . . .
n n n

i i i i i i
i i i

f b f a K b a K b a K K
K

e
d e

= = =

- ¢ - = - = =ä ä ä   

Finally the continuity of f on I ois a consequence of the arbitrariness of
 
[ , ].a b  ƴ  

 

Remark 1.4.2 [24, p.5] If : ( , )f a b ­  is convex. The derivative of f , ( , )x a b" Í  is best 

studied in terms of the left and right derivatives defined by 

             

 

                 

() ()/ /and
( ) ( ) ( ) ( )

lim lim
y x y x

f y f x f y f x
f x f x

y x y x
- +

¬ ®

- -
= =

- -
. 

Theorem 1.4.2[24, p.5] If :f I ­  is convex (strictly convex), then / ( )f x- and / ( )f x+

exist and are increasing [strictly increasing] on I o. 

Proof. Consider four points in< < <w x y z Io with P, Q, R, and S, the corresponding 

points on the graph of  .f   

Inequality (1.3.2) extended to four points gives, 

Slope Slope Slope Slope Slope ,PQ PR QR QS RS¢ ¢ ¢ ¢          (1.4.3)  
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with strict inequalities, if   f is strictly convex. 

Now since Slope < Slope ,PR QR it is clear that Slope QR  increases as x y¬  and 

similarly  that Slope RS  decreases  as .z y®  Thus the left side of the inequality 

() () () ()f x f y f z f y

x y z y

- -
¢

- -
  increases as x y¬  and the right side  decreases as .z y®

These facts guarantee that / ( )f y-  and / ( )f y+ exist and  satisfy 
                      

                                               
/ /( ) ( )f y f y- +¢ .                                                      (1.4.4) 

A result that holds for all .y I oÍ  Moreover, using (1.4.3) again, we see that 

 

( )
() ( ) () ()

()/ /
f x f w f y f x

f w f y
x w y x

+ -

- -
¢ ¢ ¢

- -
 

with strict inequalities prevailing if  f  is strictly convex. 

This combined  with (1.4.4) yields / / / /( ) ( ) ( ) ( )f w f w f y f y- + - +¢ ¢ ¢   

establishing the monotone nature of  / /and .f f- + ƴ 

 

Theorem 1.4.3 [24, pp.9-11] 

(a) : ( , )f a b ­  is (strictly) convex if and only if there exists  an  (strictly)  increasing 

function : ( , )g a b ­   and  a  real  number ( , )c a bÍ   such  that,  for all  ( , ),x a bÍ   

                                 ()( ) ( ) .
x

c
f x f c g t dt- =ñ                                                      (1.4.5) 

(b)  Suppose f is differentiable on ( , ).a b Then f is convex [strictly convex] if  and only 

if /f is increasing [strictly increasing].   

(c)  Suppose / /f  exists on ( , ).a b  Then f is convex if and only if  
/ / ( ) 0f x ²  and if 

/ / ( ) 0f x >  on ( , ),a b
 
then f is strictly convex on the interval. 

 

Proof(a). We suppose first that f is convex. Choose /( ) ( )g x f x+= which exists and is        

increasing (Theorem 1.4.2) and let c be any point in ( , ),a b  By Theorem 1.4.1, f is absolutely 

continuous on  [ , ].c x By (The Fundamental Theorem of Calculus)         
 

         

/( ) ( ) ( ) ( ) ,
x x

c c
f x f c f t dt g t dt+- = =ñ ñ   
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Moreover, if   f is strictly convex,
 

/ ( )g f x+=  will be strictly increasing, from (Theorem1.4.2).   

Conversely, suppose that (1.4.5) holds with g  increasing. Let anda b be positive  with 

1.a b+ = Then  for in ( , ),x y a b<  

( )( ) ( ) ( )( ) ( ) ( ) ( )f x f y f x y f x f x y f y f x ya b a b a b a a a b b b a b+ - + + = - + + - +

 

( ) ( ) .
y x y

x y x
g t dt g t dt

a b

a b
b a

+

+
= -ñ ñ           (1.4.6)              

To bound this  expression from  below, we  replace both  integrands  by the constant 

( )g x ya b+ , this being the smallest value of the first integrand and the largest of the second. 

We obtain on the right-hand side of (1.4.6) 
    

                      
( ) ( ) ( ) ,g x y y x y g x y x y xb a b a b a a b a bè ø è øê úê ú
+ - + - + + -     

which simplifies to 0. Thus, 

                                
() ()( )( ) 0f x f y f x ya b a b a b+ - + + ²,  

which is equivalent to the inequality that defines convexity.  

Finally, we note that the estimate made above is a strict one when g is strictly increasing. ƴ 

 

Proof(b). Having already established half of part (a). let us suppose f  is increasing 

[strictly increasing]. Then the fundamental theorem of calculus assures us that 

/( ) ( ) ( ) ,
x

c
f x f c f t dt+- =ñ  for any ( , ).c a bÍ  That f is convex [strictly convex] now 

follows from part(a). ƴ 

 

Proof(c).  Under  the given assumption 
/f is increasing if and only if   / /f  is nonnegative and 

/f  is strictly increasing when / /f is positive. This  combined with part(a) gives us our result. ƴ    

 

Remark 1.4.3  It can be proved that for convexity on an interval, the graph lies above every  

tangent line to the graph.  

 

Example 1.4.1   If  
2( ) ,f x x= then it's second derivative is 2 0> .Thus 

2( )f x x=  is strictly 

convex . But if 
 

2,( )f x x=- then it's second derivative is 2 0- <.Thus 
2( )f x x=-   is strictly 

concave. ƴ     
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Example 1.4.2   If ( ) ln ,g x x=-  then / /

2

1
( ) 0g x

x
= > which is strictly convex. But if 

( ) ln ,g x x=  then / /

2

1
( ) 0g x

x
=- < which is  strictly concave. ƴ 

Example 1.4.3   ( )h x x=  is convex function but not strictly convex, since  
/ (0)f  does not 

exist. ƴ 

Example 1.4.4   
2

1
( ) (0)withk x k

x
= =¤ is convex on and( , 0) (0, )-¤ ¤ but not convex 

on ( , )-¤ ¤ because the singularity at 0x = . ƴ 

Example 1.4.5   If 
3 2,( )m x x x= -  then 

/ / ( ) 6 2,m x x= -  so it is convex on )1 3,èê ¤  and 

concave on ( , 1 3øú-¤ . ƴ 

 

Remark 1.4.4  Every linear function is convex and concave function. 

For example, let f be a linear function defined by  ( )f x ax=  on a convex set, where a  is 

constant. 

( )( ) ( )1 1 , and [0, 1]f x y a x y x yl l l l lè ø
ê ú+ - = + - " Í 

( )1 , and [0, 1]ax a y x yl l l= + - " Í  

( )( ) 1 ( ) , and [0, 1].f x f y x yl l l= + - " Í   

Then  f  is concave and convex. ƴ 

 

Remark 1.4.5  Every linear transformation is convex but not strictly convex.  Since if f is 

linear, then ( ) ( ) ( ).f a b f a f b+ = +  The statement holds when f is concave. ƴ 

 

Remark 1.4.6[24, p.11]Our next characterization depends on the geometrically evident idea that: 

through any point on the graph of a convex function, there is a line which lies on or below the  

graph. See (Fig1.6). 
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More formally, we say that a function f  defined on I has support at x IoÍ  if  there exists an  

affine function ( ) ( ) ( )A x f x m x xo o= + -  such that ( ) ( )A x f x¢  for every .x IÍ The graph 

of the support function A  is called a line of support for f at xo . 

( ) ( )y f x m x xo o= + -  is the equation of the line with slope m  passing through the point 

( ), ( )x f xo o  on the graph of  .f   

 

Theorem 1.4.4[24, p.12]  The function  : ( , )f a b ­  is convex if  and only if  there is at 

least one line of support for f at each ( , )x a boÍ such that   

                                 
() ( ) ( ), ( , )f x f x x x x a bo ol² + - " Í                                          (1.4.7) 

where l depends on xo and is given by / ( )f xol=  where /f  exists, and 
 

                          

/ /( ), ( )f x f xl - +
è ø
ê úÍ  when / /( ) ( ).f x f x- +¸  

Proof. If f  is convex and ( , )x a boÍ  choose / /( ), ( )f x f xl - +
è ø
ê úÍ . Then 

 

                                      

( ) ( )
or

f x f x

x x
o

o

l l
-

² ¢
-
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according as orx x x xo o> < . In either case,  ( ) ( ) ( )f x f x x xo ol- ² -   that is ,
   

            
( ) ( ) ( ).f x f x x xo ol² + -   

Conversely, suppose that  f  has a line of support at each point of ( , ).a b  

Let If [0, 1], ( , ). (1 ) ,x y a b x x yo l l lÍ = + - Í. 

Let ( ) ( ) ( )A x f x x xo ol= + -  be the support function for  f  at xo. 

Then  ( ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( )f x A x A x A y f x f yo o l l l l= = + - ¢ + -  as desired. ƴ 

 

Theorem 1.4.5[17, p.5]  The function  : ( , )f a b ­   is convex if  the function 
 

( ) ( ) ( )f fx x x xo ol- - - (the difference between the function and it's support) is decreasing  

for x xo<  and increasing  for .x xo>  

Proof. It is equivalent to the inequality 2 1 2 1 1 2 0( ) ( ) ( ),f x f x x x x x xl¢ + - < ¢ and the 

reverse inequality for 0 1 2x x x¢ <   and this is a simple consequence of (1.4.7). ƴ 

                                

 

1.5   Convex and Concave Functions of Many Variables 

     In this section we study convex functions of many variables and we give some examples for  

only convex functions of  two and three variables.  

 

Let 
a b

A
b c

å õ
æ ö
ç ÷
=  be a symmetric 2×2 matrix.  

(a)  The leading principal minors are 2
1 2 .andD a D ac b= = -  

(b)  If we want to find all the principal minors, these are given by 1 2anda cD = D = (of 

order one) and 2
2 ac bD = -  (of order two).  
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Theorem 1.5.1  Let  A be a symmetric n×n matrix. Then we have for all 1 k n¢ ¢  

¶  A is positive definite iff  0kD >  . 

¶ A is negative definite iff  ( )1 0
k

kD- >. 

¶ A is positive semidefinite iff  0kD ². 

¶ A is negative semidefinite iff  ( )1 0
k

k- D ². 

 

Definition 1.5.2 [27, p.230]  (The Hessian matrix) 

The Hessian matrix of  : nf ­  at the point x is the  n×n  matrix 

                 

/ / / / / /
11 12 1

// / / / /
21 22 2

// / / / /
1 2

( ) ( ) ... ( )

( ) ( ) ... ( )
( )

( ) ( ) ... ( )

n

n

nnn n

f x f x f x

f x f x f x
H x

f x f x f x

å õ
æ ö
æ ö
æ ö
æ ö
æ ö
ç ÷

=   

The Hessian of a function for which all second partial derivatives are continuous is symmetric 

for all values of the argument of the function. 

 

Theorem 1.5.2  Let  f  be a function of many variables with continuous partial derivatives of 

first and second order on the convex open set .S Then we have: 

¶ f  is concave iff ( )xH  is negative semidefinite  .x S" Í   

¶ If  ( )xH  is negative definite  ,x S" Í  then  f is strictly concave. 

¶  f  is convex iff ( )xH  is positive semidefinite  .x S" Í   

¶ If  ( )xH  is positive definite  ,x S" Í  then  f is strictly convex. 

 

Example 1.5.1  Let  ( ) 2 2
1 2 1 2 1 1 2 2, 2 2f x x x x x x x x= - - + - 

( ) ( )/ /

1 21 2 1 2 1 2 1 2

1,2 2

, 2 2 2 and , 1 2 2

2 2
( )

2 2

2 , 0

f x x x x f x x x x

H x
å õ
æ ö
ç ÷

= - + =- + -

-
=

-

D =- D =
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Then ( )xH  is negative semidefinite. Thus  f is concave. ƴ 

Example 1.5.2  Let ( ) 2 2
1 2 1 2 1 1 2 2, 2f x x x x x x x x= - - + -  

( ) ( )/ /

1 21 2 1 2 1 2 1 2

1 2

, 2 2 and , 1 2

2 1
( )

1 2

2 , 3

f x x x x f x x x x

H x

D D

å õ
æ ö
ç ÷

= - + =- + -

-
=

-

=- =

  

Then ( )xH  is negative definite. Thus  f is strictly concave. ƴ 

 

Example 1.5.3  Let ( ) 2 2 3
1 2 3 1 2 3 1 2 1 3, x , x 2 3 2 2f x x x x x x x x= + + + +   am 

( ) ( ) ( )/ / /

1 2 31 2 3 1 2 3 1 2 3 2 1 1 2 3 3 1

1 2 3

, x ,x 2 2 2 , ,x ,x 4 2 , ,x ,x 6 2

2 2 2

( ) 2 4 0

2 0 6

2 2
2 , 4 , ( ) 8

2 4

f x x x x f x x x f x x x

H x

D D D H x

å õ
æ ö
æ ö
æ ö
ç ÷

= + + = + = +

=

= = = = =

Then ( )xH  is positive definite. Thus  f is strictly convex. ƴ 

 

Example 1.5.4  Let ( ) 2 2
1 2 1 2 1 2,f x x x x x x= - -   

( ) ( )/ /

1 21 2 1 2 1 2 2 1

1 2

, 2 and , 2

2 1
( )

1 2

2 , 5

f x x x x f x x x x

H x

D D

å õ
æ ö
ç ÷

= - =- -

-
=
- -

= =-

 1.6.3   

Then ( )xH is neither positive semidefinite nor negative semidefinite and hence f is neither 

convex nor concave. ƴ 

 

Example 1.5.5  Let  ( )1 2 1 2, 2f x x x x=  6.4  .. 

( ) ( )/ /
1 1 2 2 2 1 2 1

1,2 2

, 2 and , 2

0 2
( )

2 0

0 , 4

f x x x f x x x

H x
å õ
æ ö
ç ÷

= =

=

D = D =-

 

Then ( )xH i is indefinite. Then  f is neither convex nor concave. ƴ 
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Example 1.5.6  Let ( ) 2 3
1 2 3 1 2 3 1 2 3, x , x 3f x x x x x x x= + + - - 

( ) ( ) ( )

()

/ / / 2
1 1 2 3 2 2 1 2 3 2 1 3 1 2 3 3

3

1 2 3 3

, x ,x 1 , ,x ,x 2 , ,x ,x 3 3

0 1 0

( ) 1 2 0

0 0 6

0 1
0 , 1 , 6

1 2

f x x f x x x f x x

H x

x

D D D H x x

å õ
æ ö
æ ö
æ ö
ç ÷

= - = - = -

-

= -

-
= = =- = =-

-

 

 Then ( )xH iis indefinite .x"  Then f is neither convex nor concave. ƴ 

 

 

1.6  Jensen's and Related Inequalities 

     Johan Jensen (1859ï 1925) was a Danish mathematician and   engineer. He was the 

president of the Danish Mathematical Society from 1892 to 1903. He has many valuable 

scientific publications. Jensen's inequality was named after him in 1905.     

     Jensen's inequality is one of the most important inequalities in mathematics. It  has many 

applications and there are many inequalities associated with it. 

     In this section we study Jensen's inequality for a convex function and introduce some related 

inequalities. 

 

Theorem1.6.1 (Discrete Jensen's Inequality) [17, pp.43-44] 

If I  is an interval in  and :f I ­  is convex, ( ) ( )1x , ... , 2 ,n
nx x I n= Í ²  

( )1p , ... , np p= is a positive n-tuple( ),i.e., > 0
i

p and ( )
1

1, ... , ,
k

k i
i

p k nb
=

= =ä  then 

   

                             

( )
1 1

1 1k k

i i i i
i in n

f p x p f x
b b= =

å õ
æ ö
ç ÷

¢ä ä                                           (1.6.1) 

If   f is strictly convex, then (1.6.1) is strict unless 
1

.... nx x= =  

Proof. The proof is by induction. 

For n =2, we have  

                 ( )
2 2

1 12 2

1 1
i i i i

i i

f p x p f x
b b= =

å õ
æ ö
ç ÷

¢ä ä   

                  
( ) ( )1 1 2 2

1 2

1 1 2 2

1 2

p x p x

p p

f fp x p x
f

p p

+
¢

å õ
æ ö

+ç ÷

+

+
      which is (1.3.3). 

Suppose the result is valid for all k, 2 1.k n¢ ¢ - Then 

https://en.wikipedia.org/wiki/Danish_people
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Engineer
https://en.wikipedia.org/wiki/Danish_Mathematical_Society
https://en.wikipedia.org/wiki/Steffensen%27s_inequality
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     1

1

1 11

1 1
n

n n
n

ni i i i
i in n n n

p
f p x f x p x

b

b b b b
-

-

= =-

å õå õ
æ öæ ö æ ö

ç ÷ ç ÷

= +ä ä  

  ( )
1

1

11

1 n
n n

n i i
in n n

p
f x f p x

b

b b b

-
-

=-

å õ
æ ö
ç ÷

¢ + ä  

  ( ) ( )
1

1

11

1 n
n n

n i i
in n n

p
f x p f x

b

b b b

-
-

=-

¢ + ä  

  ( ) ( )
1

1

1 n
n

n i i
in n

p
f x p f x

b b

-

=

= + ä  

  

( )
1

1 n

i i
in

p f x
b =

= ä   

holds by the result for  n = 2  and the induction hypothesis. 

The proof for the strict inequality when  f  is strictly convex is easy and is omitted. ƴ 

 

Remarks 1.6.1[17, p.44] h 

(a)  The condition that  p)is a positive n-tuple can be replaced by : " p is nonnegative n-tuple 

and > 0.np  " 

(b)  Jensen's inequality in (1.6.1) can be used as an alternative definition of convexity. 

(c)  Jensen's original papers (1905 & 1906) are related to  J-convex functions (functions which 

satisfy (1.3.4)). However, inequality (1.3.4) appeared much earlier under different 

assumptions. 

(d)  A special case of (1.6.1) in the form   

                                              ( )
1 1

1 1n n

i i
i i

f x f x
n n= =

å õ
æ ö
ç ÷

¢ä ä                                       (1.6.2) 

 

Remark 1.6.2[4, p.31]  A very simple inductive proof for the equal weight case has been given 

by Aczel [Aczel 1961]. Assume that 2n²  and that the result is known for all k, 2 ,k n¢ ¢     

we have 

  
( )

1

1 1 1

1 1 1 2 1

2 1 1 1

n n n

ni i i
i i i

n
f a f a a a

n n n n n

-

= = =

å õè øå õ
æ öé ùæ ö
æ öç ÷ é ùê úç ÷

-
= + +

- - -
ä ä ä  

                      
( )

1

1 1

1 1 2 1 1

2 1 1 1

n n

n i i
i i

n
f a a f a

n n n n

-

= =

å õå õ å õå õ
æ öæ ö æ öæ öæ öæ öç ÷ ç ÷ç ÷ç ÷

-
¢ + +

- - -
ä ä  

                               by the case n = 2 
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  ( )
( )

( )
1

1 1 1

1 1 1 2 1 1

2 1 1 1

n n n

ni i i
i i i

n
f a f a f a f a

n n n n n

-

= = =

å õå õå õ å õ
æ öæ öæ ö æ öæ öæ öç ÷ ç ÷ç ÷ç ÷

-
¢ + +

- - -
ä ä ä  

by the case n=2, and the induction hypothesis. 

Then 
( ) ( )

( )
1 1

2 1 1
1

2 1 2 1

n n

i i
i i

n
f a f a

n n n= =

å õå õ
æ öæ öæ öç ÷ç ÷

-
- ¢

- -
ä ä  

      

( ) ( )
( )

1 1

2 2 2 1 1

2 1 2 1

n n

i i
i i

n n
f a f a

n n n= =

å õå õ
æ öæ öæ öç ÷ç ÷

- - +
¢

- -
ä ä  

Thus

  

( )
1 1

.
1 1n n

i i
i i

f a f a
n n= =

å õ
æ ö
ç ÷

¢ä ä  ƴ  

 

Discrete Jensen ï Steffensen Inequality 

Jensen ï Steffensen inequality in discrete form states that:  

      

 Let x and p be two n-tuple of real numbers such that x is nonincreasing, [ , ]ix a bÍ
 

( ),1 i n¢ ¢ and ( )0 1,..., 1 , > 0n nkS S k n S¢ ¢ = -  where ( )
1

.1,...,
k

k i
i

S p k n
=

= =ä  

Then, for every real valued convex function f defined on [ , ],a b   

( )
1 1

1 1n n

i i i i
i in n

f p x p f x
S S= =

å õ
æ ö
ç ÷

¢ä ä                                                 (1.6.3) 

   

Theorem1.6.2  (The Integral Form of Jensen's Inequality) [17, pp.59-60]          

Let f be a continuous convex function over the range of the continuous function  f  with 

bounded domain [ , ]a b . If l is continuous satisfying 

              () ( ) ( ) ( ) ( ) ( ) ( ) ()1 1 2 2 1... nna x y x y y x bl l l l l l l l-¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢  

for all kx  in ( )1,k ky y-   ( )0 , ny a y b= =  and () ()<a bl l  and if  f  is continuous and 

monotone in each of the n-1 intervals ( )1 ,,k ky y-  then 

                   

 

() ()

()

()( ) ()

()

b b

a a
b b

a a

f x d x f x d x

d x d x

l f l
f

l l

å õ
æ ö
æ ö
æ ö
ç ÷

¢
ñ ñ

ñ ñ
                                  (1.6.4)   

holds. 
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Proof. We shall use only Jensen's inequality for sums, i.e., (1.6.1) for nonnegative n-tuple if  

() ( ) ( ) ( ) ()1 2 1 ,... na y y y bl l l l l-¢ ¢ ¢ ¢ ¢ then from Jensen ï Steffensen inequality(1.6.3), 

we have  

t
() ()

()

()( ) ()

()
1 1

1 1

, 1,...,

k k

k k

k k

k k

y y

y y

y y

y y

f x d x f x d x
k n

d x d x

l f l
f

l l

- -

- -

å õ
æ ö
æ ö
æ ö
ç ÷

¢ =
ñ ñ

ñ ñ
 

i.e., ( ) ()( ) ()
1

1
, 1,...,

k

k

y

k
y

k

t f x d x k n
p

f f l
-

¢ =ñ  

()
() ()

()
1

1

1

.with the notation ,

k

k
k

k
k

k

y

y y

k k yy

y

f x d x
p d x t

d x

l
l

l

-

-

-

= =
ñ

ñ
ñ

  

( ) ( )Since and then by 1.6.1 we have> 0 1,..., ,k kp t I k nÍ =   

() ()

()

( ) ()( ) ()
111 1

1 1 1

1
.

k

k

nn n y
b

kk k k k y
ka k k k

n n nb

k k ka
k k k

p f x d xp t p tf x d x p

d x p p p

f lfl
f f

l

-== =

= = =

å õ
å õ æ ö
æ ö æ ö
æ ö æ öæ ö

æ öç ÷
ç ÷

= ¢ ¢
ää ä ññ

ñ ä ä ä

  

                                                                          

()( ) ()

()
.

b

a
b

a

f x d x

d x

f l

l
=
ñ

ñ
 ƴ. 

 

Remark 1.6.3[17, p.60]  If ( ) ( )1j jy yl l- =  for some j, then () 1on0 ,j jd x y yl -
è ø
ê ú

=   

                    

() () ()
1 1

, .
n nb b

k k k
a a

k k
k j k j

f x d x p t d x pl l
= =
¸ ¸

= =ä äñ ñ  

 

     The following theorem is equivalent to Theorem1.6.2  

Theorem1.6.3 [2, pp.34-39]  Let , , , .a b x yÍ  If :w ­  and : ( , )g x y­ are 

integrable and a nonnegative continuous functions, with () > 0
b

a
w t dtñ  and ( , ): x yF ­  is 

continuous and convex, then   

                          

()()

()

() ()( )

()
.

b b

a a
b b

a a

w t g t dt w t F g t dt
F

w t dt w t dt

å õ
æ ö
æ ö
æ ö
ç ÷

¢
ñ ñ

ñ ñ
   ()                           (1.6.5) 
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Proof. Since ( , ): x yF ­  is continuous and convex, then by (1.4.7)   

() ( ) ( ), ( , ).F a F x a x a x yo ol- ² - " Í  S 

Setting

    

() ()

()
.

b

a
b

a

w t g t dt
x

w t dt
o =
ñ

ñ
 

Now  () ()( ) ()
() ()

()

b

b b
a

ba a

a

w t g t dt
w t F g t dt w t dt F

w t dt

å õå õ
æ öæ öå õ

æ öæ öæ öç ÷ æ öæ ö
ç ÷ç ÷

-
ñ

ñ ñ
ñ

 

        () ()( ) () ( )
b b

a a
w t F g t dt w t dt F xo

å õ
æ ö
ç ÷

= -ñ ñ  

        () ()( ) ( )
b

a
w t F g t F x dto

è ø
ê ú

= -ñ  

        () ()
b

a
w t g t x dtol è ø

ê ú² -ñ  

        ()() ()
b b

a a
w t g t dt x w t dtolè ø

é ùê ú
= -ñ ñ        

        ()()
()()

()
()

b

b b
a

ba a

a

w t g t dt
w t g t dt w t dt

w t dt
l

è ø
é ù
é ù
é ùê ú

= -
ñ

ñ ñ
ñ

 

        

0.=   

The proof is complete. ƴ 
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2.1  Introduction 

     Johan Frederik Steffensen (1873ï1961) was a Danish mathematician and  statistician. He 

was a professor of science at the University of Copenhagen from 1923 to 1943. He has many 

valuable scientific publications. Steffensen's inequality was named after him in 1918.  

     Steffensen's inequality is one of the most important inequalities in mathematics and have 

many applications. It plays an important role in studying some integral inequalities and it is used 

for dealing with the comparison between integrals over a whole interval [ , ]a b  and integrals 

over a subinterval of [ , ].a b  

     In this chapter we study Steffensen's inequality, and introduce some generalization of 

Steffensen's inequality. Moreover, we study Mercer's result and the relation between Steffensen's 

and Jensen's inequalities. At the end, we give a new application for special functions related to 

the results of this chapter.   

 

2.2   Steffensen's Inequality(one variable)  

     In the following theorem we introduce the original form of Steffensen's inequality (the 

classical form) which has been proved by Steffensen in 1918. 

Theorem 2.2.1 (The original result) [26] 

Assume that two integrable functions ( )f t  and ( )g t  are defined on the interval [ , ]a b  with  

( )f t  nonincreasing and that 0 ( ) 1g t¢ ¢ on [ , ].a b  Then  

                     
( ) ( ) ( ) ( )

b b a

b a a
f t dt f t g t dt f t dt

l

l

+

-
¢ ¢ñ ñ ñ                                          (2.2.1) 

where    
                      

( ) .
b

a
g t dtl=ñ                                                                                  (2.2.2) 

Proof. The proof of the second inequality in (2.2.1) goes as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
a b a a b

a a a a a
f t dt f t g t dt f t dt f t g t dt f t g t dt

l l l

l

+ + +

+
- = - -ñ ñ ñ ñ ñ  

                                             
 

                                                      
[ ]1 ( ) ( ) ( ) ( ) .

a b

a a
g t f t dt f t g t dt

l

l

+

+
= - -ñ ñ                                                                       

Since  f  is nonincreasing on [ , ],a a l+  for ,t a l¢ +  then ( )( )f t f a l² + and hence  

https://en.wikipedia.org/wiki/Danish_people
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/Steffensen%27s_inequality
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( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ
 

                        
( ) 1 ( ) ( ) ( )

a b

a a
f a g t f t g t dtdt

l

l
l

+

+
è øê ú+ - -² ñ ñ   

                        
( ) 1 ( ) ( ) ( )

a a b

a a a
f a dt g t dt f t g t dt

l l

l
l

+ +

+

å õ
æ ö
ç ÷

= + - -ñ ñ ñ  

                          
( ) ( ) ( )

b a

a b
f a a a g t dt g t dt

l

l l
+å õ

æ ö
ç ÷

= + + - - -ñ ñ  
( )( )

b

a
tf t g dt

l+
-ñ                                                                                                    

                        
( ) ( ) ( ) ( )

a b

b a
f a g t dt f t g t dt

l

l
l

+

+
+ -=- ñ ñ  

                        
( ) ( ) ( ) ( )

b b

a a
f a g t dt f t g t dt

l l
l

+ +
+ -= ñ ñ  

 

                       
( )( ) ( ) 0,

b

a
g t f a f t dt

l
l

+
è ø
ê ú+ - ²=ñ  

where  f  is nonincreasing on [ , ],a bl+  for t a l² +, then ( )( )tf f a l¢ +                               

i.e. ( ) () 0f a f tl+ - ². (End the proof of the second inequality) 

Now, we prove the first part of inequality (2.2.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b b b b

a b a b b
f t g t dt f t dt f t g t dt f t g t dt f t dt

l

l l l

-

- - -
- = + -ñ ñ ñ ñ ñ  

    
[ ]1 ( )( ) ( ) ( ) .

b b

a b
g tf t g t dt f t dt

l

l

-

-
-= -ñ ñ   

Since  f  is nonincreasing on [b , ],bl-  for t b l² -, then ( )( )f t f b l¢ -  and hence 

                          
( ) ( ) ( )

b b

a b
f t g t dt f t dt

l-
-ñ ñ   

                          ( )( )( ) 1 ( )
b b

a b
tf t g dt f b g t dt

l

l
l

-

-
è øê ú² - - -ñ ñ   

                         ( )( )( ) 1( ) ( )
b

b

b b

a b
t dtf t g dt f b g t dt

l

l

l
l

-

-

-
-= -- ññ ñ  

                         ( ) ( )
b

a
f t g t dt

l-

=ñ ( ) ( ) ( )
a b

b a
f b b b g t dt g t dt

l
l l

-

è ø
é ùê ú

- - - + - -ñ ñ  

                         
( )( ) ( ) ( )

b b

a a
f t g t dt f b g t dt

l l

l
- -

= - -ñ ñ  
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( )( ) ( ) 0,
b

a
g t f t f b dt

l

l
-

è ø
ê ú= - - ²ñ                                  

where  f  is nonincreasing on [ , ],a b l-  for bt l-¢ , then ( )( )f t f b l² -                

i.e. () ( ) 0f t f b l- - ². (End the proof of the first inequality). ƴ 

 

It is important now to give another proof of the first part of inequality (2.2.1) 

Let ( ) 1 ( )G t g t= -  and ( ) .
b

a
p G t dt=ñ   

Since  0 ( ) 1g t¢ ¢ on [ , ]a b , then 0 ( ) 1g t²- ²- and 0 1 ( ) 1g t¢ - ¢ on [ , ].a b  Hence  

0 ( ) 1G t¢ ¢ on [ , ]a b . 

Also ( )( ) 1 ( ) 1 ( )
b b b b

a a a a
p G t dt g t dt dt g t dt b a lè øê ú= = - = - = - -ñ ñ ñ ñ , hence .b a p l- = +  

Suppose the second inequality in (2.2.1) holds, then 

,( ) ( ) ( )
b a p

a a
f t G t dt f t dt

+

¢ñ ñ  so   ,( ) 1 ( ) ( )
b b

a a
f t g t dt f t dt

l-

è øê ú- ¢ñ ñ  hence 

                
,( ) ( ) ( ) ( )

b b b

a a a
f t dt f t g t dt f t dt

l-

- ¢ñ ñ ñ  then  

               
( ) ( ) ( ) ( ) ,

b b b

a a a
f t dt f t dt f t g t dt

l-

- ¢ñ ñ ñ  therefore  

              
( ) ( ) ( ) ( ) .

b a b

a b a
f t dt f t dt f t g t dt

l-
+ ¢ñ ñ ñ  

Thus     ( ) ( ) ( ) .
b b

b a
f t dt f t g t dt

l-
¢ñ ñ  ƴ 

 

     We now give some remarks and examples to show how we can use and apply the inequality 

in Theorem 2.2.1. 

Remarks 2.2.1  

(a)   If   ( )f t  is nondecreasing, then the inequality (2.2.1) is reversed. 

(b)   From the condition 0 ( ) 1,g t¢ ¢ we get  ,0 ( )
b b

a a
g t dt dt¢ ¢ñ ñ and hence 

0 ,b al¢ ¢ - thus a a bl¢ + ¢ and .a b bl¢ - ¢     
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(c)   Our strategy in proving the first part of inequality (2.2.1) is very important and benefits 

us in the study of some generalizations associated with the original result. 

Example 2.2.1  Let ( )f t t=- and ( ) 1
2

t
g t = - be two integrable functions on [0, 2] such that 

( )f t  is decreasing and 0 ( ) 1g t¢ ¢ on [0, 2]. Then  

2
22

0
0

( ) 1 1 [0, 2]
2 4

b

a

t t
g t dt dt tl

øèå õ
ùéæ ö

ç ÷ ùê ú

= = - = - = Íñ ñ , and we have  

( )

2
3 22

0
0

4
( ) ( ) 1

2 6 2 6

b

a

t t t
f t g t dt t dt

øèå õ
ùéæ ö

ç ÷ ùê ú

= - - = - =-ñ ñ , 

2
22

1
1

1 3
( ) 4 1

2 2 2

b

b

t
f t dt t dt
l-

ø
è øù ê ú

ú
= - =- =- - =-ñ ñ , and  

1
21

0
0

1 1
( ) 1 0

2 2 2

a

a

t
f t dt t dt
l+ ø

è øù ê ú
ú

= - =- =- - =-ñ ñ .  

Hence  (2.2.1) holds. ƴ 

 

Example 2.2.2  Let ( )f t t=- and ( ) 1
2

t
g t = - be two integrable functions on [ 1, 1]-  such that 

( )f t  is decreasing and 0 ( ) 1g t¢ ¢ on [ 1, 1]- . Then 

1
21

1
1

( ) 1 2 [ 1, 1]
2 4

b

a

t t
g t dt dt tl

-
-

øèå õ
ùéæ ö

ç ÷ ùê ú

= = - = - = Î -ñ ñ , and 

( )

1
3 21

1
1

1
( ) ( ) 1

2 6 2 3

b

a

t t t
f t g t dt t dt

-
-

øèå õ
ùéæ ö

ç ÷ ùê ú

= - - = - =ñ ñ , 

1
21

1
1

1
( ) 1 1 0

2 2

b

b

t
f t dt t dt
l- -

-

ø
è øù ê ú

ú
= - =- =- - =ñ ñ , 

1
21

1
1

0
1

( ) 1 1
2 2

a

a

t
f t dt t dt
l+

-
-

ø
=è øù ê ú

ú
= - =- =- -ñ ñ .  

Hence  (2.2.1) does not hold because ( ) [0, 1]g t Î . ƴ 
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2.3  Some Generalizations Related to Steffensen's Inequality 

     In this section we introduce some generalizations for Steffensen's inequality (2.2.1). We use 

the same technique which has been used in [1]. 

     In [10] Hayashi gave the following generalization of Steffensen's inequality 

Theorem 2.3.1  Assume that two integrable functions ( )f t  and ( )g t  are defined on the  

interval [ , ]a b  with  ( )f t  nonincreasing and that 0 ( )g t A¢ ¢  on [ , ]a b
  
( A is some positive 

constant ). Then  

                     
( )( ) ( ) ( )

b b a

b a a
A tf t dt f t g dt A f t dt

l

l

+

-
¢ ¢ñ ñ ñ                               (2.3.1) 

where 
               

1 ( )
( ) ( ) such that ( ) .

b b

a aA

g t
G t dt g t dt G t

A
l= = =ñ ñ                           (2.3.2) 

Proof. Since 0 ( )g t A¢ ¢ on [ , ]a b , then 
( )

0 1
g t

A
¢ ¢, and hence 0 ( ) 1G t¢ ¢on [ , ].a b  

We obtain from the original Steffensen's inequality (2.2.1) 

                  () () () () ,
b b a

b a a
f t dt f t G t dt f t dt

l

l

+

-
¢ ¢ñ ñ ñ    where    ( ) .

b

a
G t dtl=ñ   

Then 

                
( )

( ) ( ) ( )
b b a

b a aA

g t
f t dt f t dt f t dt

l

l

+

-
¢ ¢ñ ñ ñ   

or  

            ( ) ( ) ( ) ( )
b b a

b a a
A Af t dt f t g t dt f t dt

l

l

+

-
¢ ¢ñ ñ ñ  which is (2.3.1). ƴ 

 

Theorem 2.3.2  Assume that two integrable functions ( )f t  and ( )g t  are defined on the interval 

[ , ]a b  with  ( )f t  nonincreasing and that ( )A g t A- ¢ ¢ on [ , ]a b
  

(A is some positive 

constant ). Then  

( )( ) ( ) ( )
b a b

b b a
A A tf t dt f t dt f t g dt

l l- -
+ ¢ñ ñ ñ  

                                                        ( ) ( )
a a

a b
A f t dt A f t dt

l l+ +

¢ +ñ ñ                          (2.3.3) 
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where 
 

[ ]
()1

2 2
( ) ( ) such that ( )

b

a

b

a

g t A
G g A

A A
t dt t dt G tl

+è ø
+ é ù

ê ú
= = =ñ ñ                         (2.3.4)         

Proof. Since  
 

( )A g t A- ¢ ¢ on [ , ]a b , then 
 
0 ( ) 2 ,g t A A¢ + ¢  hence 

2

( )
0 1

g A

A

t +è ø
é ù
ê ú
¢ ¢,  

thus  0 ( ) 1G t¢ ¢  on [ , ]a b .   

We obtain from the original Steffensen's inequality (2.2.1) 

            
( ) ( ) ( ) ( ) .

b b a

b a a
f t dt f t G t dt f t dt

l

l

+

-
¢ ¢ñ ñ ñ   

Then 

    
2

( )
( ) ( ) ( )

b b a

b a a

g A

A

t
f t dt f t dt f t dt

l

l

+

-

+è ø
é ù
ê ú

¢ ¢ñ ñ ñ  

or 

      
[ ]2 2( ) ( ) ( ) ( )

b b a

b a a
A g A Af t dt f t t dt f t dt

l

l

+

-
+¢ ¢ñ ñ ñ  

  

or 

   2 2( ) ( ) ( ) ( ) ( ) ( )
b b b a b

b a a a a
A A g A Af t dt f t dt f t t dt f t dt f t dt

l

l

+

-
- ¢ ¢ -ñ ñ ñ ñ ñ  

which becomes 

    

2 ( ) ( ) ( ) ( ) ( )
b b b b

b a b a
A A A gf t dt f t dt f t dt f t t dt

l

l l

-

- -
- - ¢ñ ñ ñ ñ   

                                                            2 ( ) ( ) ( ) .
a a b

a a a
A A Af t dt f t dt f t dt

l l

l

+ +

+
¢ - -ñ ñ ñ                  

Thus, (2.3.3) is valid. ƴ 

 

2.4  Mercer's Result of Steffensen's Inequality 

     Mercer is a mathematician and  statistician who has many valuable scientific publications on 

Steffensen's inequality.  

     In [12] Mercer gave the following generalization of Steffensen's inequality 

Theorem 2.4.1  Let  f, g and h be integrable functions on [ , ]a b  with  f  nonincreasing, and 

0 .g h¢ ¢  Then 

https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/Steffensen%27s_inequality
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                ( )( ) ( ) ( ) ( ) ( ) ,
b b a

b a a
tf t h t dt f t g dt f t h t dt

l

l

+

-
¢ ¢ñ ñ ñ                                    (2.4.1) 

where l is given by 

                                        ( ) ( )
a b

a a
h t dt g t dt

l+

=ñ ñ .                                                              (2.4.2) 

     In[11] Z.Liu claims that there is an error in Mercer's result (2.4.1), where the left inequality in 

(2.4.1) may not hold under the condition (2.4.2). He considered the following counterexample :    

Let ( ) ( ) ( )[ , ] [0, 2], 8 3 , and 4t t ta b f t g t h t= = - = =. 

Then  f, g and h are integrable functions on [0, 2] with f nonincreasing, and0 4 ,t t¢ ¢  and    
0 2

2

0 0
4 , then 2 2, thus 1.t dt t dt

l

l l
+

= = =ñ ñ  However, 

( ) ( )
2 2

2 3

00
( ) ( ) 8 3 4 8

b

a
f t g t dt t t dt t t= - = - =ñ ñ    and 

( )( ) ( )
2 2

2 3

11
( ) ( ) 8 3 4 4 4 20

b

b
f t h t dt t t dt t t

l-
= - = - =ñ ñ  

which obviously contradicts the left inequality in (2.4.1). Consequently, the  inequality (2.4.1) is 

not true in general. ƴ  

 

     The following three theorems are provided so as to correct the above mentioned error and to 

give some extensions of Steffensen's inequality, and these theorems are due to Z.Liu[11].  

Theorem 2.4.2 Let  f, g and h be integrable functions on [ , ]a b  with  f  nonincreasing, and 

0 g h¢ ¢. Then 

                                      ( ) ( ) ( ) ( ) ,
b a

a a
f t g t dt f t h t dt

l+

¢ñ ñ                                            (2.4.3) 

where l is given by 

                                           ( ) ( )
a b

a a
h t dt g t dt
l+

=ñ ñ .                                                            (2.4.4) 

Proof.  To prove (2.4.3) let us write: 

( )( ) ( ) ( )
a b

a a
tf t h t dt f t g dt

l+

-ñ ñ  

( ) ( ) ( ) ( ) ( ) ( )
a a b

a a a
f t h t dt f t g t dt f t g t dt
l l

l

+ +

+
= - -ñ ñ ñ  
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( ) ( ) ( ) ( ) ( ) .
a b

a a
h t g t f t dt f t g t dt

l

l

+

+
è øê ú= - -ñ ñ  

Since  f  is nonincreasing on ,,a a lè øê ú+ for ,t a l¢ + then  ( )( )f t f a l² + and hence 

( )( ) ( ) ( )
a b

a a
tf t h t dt f t g dt

l+

-ñ ñ   

( ) ( ) ( ) ( ) ( )
a b

a a
f a h t g t dt f t g t dt

l

l
l

+

+
è øê ú² + - -ñ ñ  

( ) ( ) ( ) ( ) ( )
a a b

a a a
f a h t dt g t dt f t g t dt

l l

l
l

+ +

+

è ø
é ùê ú

= + - -ñ ñ ñ  

( ) ( ) ( ) ( ) ( )
b a b

a a a
f a g t dt g t dt f t g t dt

l

l
l

+

+

è ø
é ùê ú

= + - -ñ ñ ñ  

( ) ( ) ( ) ( ) ( ) ( )
a b a b

a a a a
f a g t dt g t dt g t dt f t g t dt

l l

l l
l

+ +

+ +

è ø
é ùê ú

= + + - -ñ ñ ñ ñ  

( ) ( ) ( ) ( )
b b

a a
f a g t dt f t g t dt

l l
l

+ +
= + -ñ ñ  

( )( ) ( ) 0
b

a
g t f a f t dt

l
l

+
è ø
ê ú= + - ²ñ , 

where  f  is nonincreasing on ,,a blè øê ú+ for ,t a l² + then  ( )( )f t f a l¢ + and hence (2.4.3) 

is valid. ƴ 

 

Theorem 2.4.3 Let f, g and h be integrable functions on [ , ]a b  with  f  nonincreasing, and 

0 g h¢ ¢. Then 

                                      ( )( ) ( ) ( ) ,
b b

b a
tf t h t dt f t g dt

l-
¢ñ ñ                                                (2.4.5) 

where l is given by 

                                        ( ) ( )
b b

b a
h t dt g t dt
l-

=ñ ñ .                                                               (2.4.6) 

Proof. To prove (2.4.5) let us write: 

( )( ) ( ) ( )
b b

b a
tf t h t dt f t g dt

l-
-ñ ñ  

( ) ( ) ( ) ( ) ( ) ( )
b b b

b a b
f t h t dt f t g t dt f t g t dt

l

l l

-

- -
= - -ñ ñ ñ  



35 
 

( ) ( ) ( ) ( ) ( ) .
b b

b a
h t g t f t dt f t g t dt

l

l

-

-
è øê ú= - -ñ ñ  

Since  f  is nonincreasing on ,,b blè øê ú- for ,t b l² - then  ( )( )f t f b l¢ - and hence 

( )( ) ( ) ( )
b b

b a
tf t h t dt f t g dt

l-
-ñ ñ  

( ) ( ) ( ) ( ) ( )
b b

b a
f b h t g t dt f t g t dt

l

l
l

-

-
è øê ú¢ - - -ñ ñ  

( ) ( ) ( ) ( ) ( )
b b b

b b a
f b h t dt g t dt f t g t dt

l

l l
l

-

- -

è ø
é ùê ú

= - - -ñ ñ ñ  

( ) ( ) ( ) ( ) ( )
b b b

a b a
f b g t dt g t dt f t g t dt

l

l
l

-

-

è ø
é ùê ú

= - - -ñ ñ ñ  

( ) ( ) ( ) ( ) ( ) ( )
b b b b

a b b a
f b g t dt g t dt g t dt f t g t dt

l l

l l
l

- -

- -

è ø
é ùê ú

= - + - -ñ ñ ñ ñ  

( ) ( ) ( ) ( )
b b

a a
f b g t dt f t g t dt

l l

l
- -

= - -ñ ñ  

( )( ) ( ) 0
b

a
g t f b f t dt

l

l
-

è ø
ê ú= - - ¢ñ , 

where  f  is nonincreasing on ,,a b lè øê ú- for ,bt l-¢ then  ( )( )f t f b l² - and hence (2.4.5) 

is valid. ƴ 

 

     The following theorem is a modified version of Mercer's inequality (2.4.1)  

Theorem 2.4.4 Let  f, g and h be integrable functions on [ , ]a b  with  f  is nonincreasing, and 

0 g h¢ ¢. Then 

                   ( )( ) ( ) ( ) ( ) ( ) ,
b b a

b a a
tf t h t dt f t g dt f t h t dt

l

l

+

-
¢ ¢ñ ñ ñ                             (2.4.7)                 

where l is given by 

                                         ( ) ( ) ( ) .
b b a

b a a
h t dt g t dt h t dt

l

l

+

-
= =ñ ñ ñ                                   (2.4.8) 

Proof. The proof follows from Theorem 2.4.2  and Theorem 2.4.3. ƴ      
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     If we now apply the above counterexample in page 33 to Theorems 2.4.2 and 2.4.3, the 

results their will hold.   

In Theorem 2.4.2,   
0 2

2

0 0
4 , then 2 2, thus 1t dt t dt

l

l l
+

= = =ñ ñ

( ) ( )
2 2

2 3

00
( )( ) 8 3 4 8

b

a
tf t g dt t t dt t t= - = - =ñ ñ    and 

( )( ) ( )
1 1

2 3

00
( ) ( ) 8 3 4 4 4 12.

a

a
f t h t dt t t dt t t

l+

= - = - =ñ ñ   Hence (2.4.3) holds.    

In Theorem 2.4.3,   ( )( )
2 2 2

2 0
4 , then 2 4 2 2, thus 32t dt t dt

l
l l

-
= - - = =-ñ ñ

( ) ( )
2 2

2 3

00
( ) ( ) 8 3 4 8

b

a
f t g t dt t t dt t t= - = - =ñ ñ    and 

( )( ) ( )
2 2

2 3

33
( ) ( ) 8 3 4 4 4 4.78

b

b
f t h t dt t t dt t t

l-
= - = - =ñ ñ . Hence (2.4.5) holds.             

 

Remark 2.4.1  Setting ( ) 1h t =  in Theorem 2.4.4,  we obtain Steffensen's inequality (2.2.1). 

        

2.5  The Relationship between Steffensen's and Jensen's Inequalities 

     In this section we focus on the relationship between Steffensen's and  Jensen's inequalities 

through the definition of convex function. 

     The following theorem has an important role in the proof of Theorem 2.5.2 

Theorem 2.5.1 [14]  If   f  is a nondecreasing nonnegative integrable function on [ , ]a b , then 

                 

1 1 1
( ) ( ) ( )

x b b

a a x
f u du f u du f u du

x a b a b x
¢ ¢

- - -ñ ñ ñ  

for every [ , ]x a bÍ .  

 

Using the substitution  ( ) ( ) ( ) , where > 0, and ( ) 0,
b b

a a
g t G t G t dt G t dtl l= >ñ ñ  then 

(2.2.1) becomes  
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( )

( ) ( ) ( )
( )

b b a

bb a a

a

G t
f t dt f t dt f t dt

G t dt

l

l

l +

-

å õ
æ ö
æ ö
æ ö
ç ÷

¢ ¢ñ ñ ñ
ñ

                                                                                                                                                                                                                                                                        

  or   

                      
( )

( ) ( ) ( ) ( ) .
b

a

b b a

b a a
G

G t dt
f t dt f t t dt f t dt

l

l

l +

-
¢ ¢

ñ
ñ ñ ñ   

Hence                     

                   
1 1

( )

( ) ( )
( ) ( ) .

b

a

b

b a
a

b a

G

G t dt

f t t dt
f t dt f t dt

l

ll l

+

-
¢ ¢

ñ

ñ
ñ ñ                                      (2.5.1) 

These inequalities are true for every nonincreasing function   f   if  and only if  [ , ]x a b" Í   

                      ( )0 ( ) ( ) ,
b b

x a
G t dt b x G t dtl¢ ¢ -ñ ñ                                                         (2.5.2) 

                     ( )0 ( ) ( ) ,
x b

a a
G t dt x a G t dtl¢ ¢ -ñ ñ                                                         (2.5.3) 

hold and the second inequality in (2.5.1) is valid if and only if   

           ( )( ) ( ) and ( ) 0.
x b b

a a x
G t dt x a G t dt G t dtl ¢ - ²ñ ñ ñ                                    (2.5.4) 

 

Theorem 2.5.2 [17, p.189] Let ( )f x  be a nonnegative nonincreasing function on [ , ]a b  and 

()uf  be an increasing convex function for 0u²  with (0) 0f = . If ( )g x  is a nonnegative 

nondecreasing function on  [ , ]a b  such that there exist a positive function 1( )g x  defined by the 

equation  

                                        1

1

( )
( ) 1

( )

g x
g x

g x
f
å õ
æ ö
ç ÷

=                                                                        (2.5.5) 

and that 1( ) 1
b

a
g t dt¢ñ , then the following inequality is valid  

                                               ( )
( ) ( ) 1

( )
( )

b

a
a

b a

a

f t g t dt
f t dt

g t dt

l

f f
l

+
å õ
æ ö
æ ö
æ ö
ç ÷

¢
ñ

ñ
ñ

                             (2.5.6)      

where  ( )
b

a
g t dtl få õ

æ ö
ç ÷

= ñ . 
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Proof.  Using Jensen's inequality for convex function (1.6.5) and the second inequality in (2.5.1), 

we have  

            
( )

( )
( ) ( )

( )

( ) ( ) 1
( )

( )

b

a

b

a

b

a
a

b a

a

g t f t dt

g t dt

f t g t dt
f t dt

g t dt

lf
f f

l

+
å õ
æ ö
æ ö
æ ö
ç ÷

¢ ¢
ñ

ñ

ñ
ñ

ñ
                      (2.5.7)        

provided that  

            

  
( ) ( ) , 0( ) ( ) ( )

b b

a x

b x

a a
g g x a g t dt g dtt dt t dt tf

å õ
æ ö
ç ÷

¢ - ²ñ ññ ñ                        (2.5.8) 

hold for every [ , ]x a bÍ .  

The second inequality in (2.5.8) is trivially valid. On the other side, the increasing convex 

function f satisfies the condition (0) 0f = , that is ( ) ( ), 0 1ax a x af f¢ ¢ ¢, and we have   

1

1

1

1

1

1

1

1

1

1

( )

( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )

( ) ( ) ( ) ( )

( )

b

a

b

a

b

ab

ba

a

b

ab

ba

a

b x b x

a a a a

x

a

g t dt

g t dt
g dt g dt g dt g dt

g t
g t dt

g t
g t dt g dt

g t dt

g t
g t dt

g t
g t dt

g t dt

t t t t

t

f f

f

f

å õ
å õ æ ö
æ ö æ öç ÷ æ ö

ç ÷

å õå õ
æ öæ ö
æ öç ÷
æ ö
æ ö
æ ö
ç ÷

å õå õ
æ æ ö
æ ç ÷
æ
æ
æ
ç

=

¢

¢

ñ

ñ

ñ
ñ

ñ

ñ
ñ

ñ

ñ ñ ñ ñ

ñ

( )
x

a
g dtt

ö
ö
ö
ö
ö
÷

ñ

( )

1

1

( )

( )

1.

( )

.

( )

( )

( )

b

a

b

a

x

a

x

a

x

a

g t
g dt

g t

dt

t g dt

g dt

b a g dt

t

t

t

f
å õ
æ ö
ç ÷

=

=

= -

ñ

ñ

ñ

ñ

ñ

   

Since ( )g t  is a nonnegative nondecreasing function, we have from Theorem 2.5.1, 

( )
1 1

( ) ( ) , then (b a) ( ) ( ) .
x b x b

a a a a
g t dt g t dt g t dt x a g t dt

x a b a
¢ - ¢ -

- -ñ ñ ñ ñ  

Hence the first inequality in (2.5.8) is also satisfied. ƴ   
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     The following theorem is a generalization of Theorem 2.5.2. We follow Z.Liu in [11] with 

modification. Let us first give the substitution 

( ) ( ) ( ) ( ) , where > 0, and ( ) 0,
a b b

a a a
g t G t h t dt G t dt G t dt

l

l
+

= >ñ ñ ñ then (2.4.7) becomes 

                     

   

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

a

b b a
a

bb a a

a

G t h t dt
f t h t dt f t dt f t h t dt

G t dt

l

l

l

+

+

-

å õ
æ ö
æ ö
æ ö
ç ÷

¢ ¢
ñ

ñ ñ ñ
ñ

  

  or 

                    
( )

( ) ( ) ( ) ( ) ( ) ( ) .
( )

a

b b a
a

bb a a

a

h t dt
f t h t dt f t G t dt f t h t dt

G t dt

l

l

l

+

+

-
¢ ¢
ñ

ñ ñ ñ
ñ

  

Hence  

                      
( ) ( ) ( ) ( ) ( ) ( )

.
( )( ) ( )

b

a

b b a

b a a
a a

a a
dt

t h t dt f t G t dt f t h t dt

G th t dt h t dt

f
l

l
l l

+

-
+ +

¢ ¢

ñ

ñ ñ ñ

ñ ñ
                         (2.5.9)        

These inequalities are true for every nonincreasing function  f  if  and only if  [ , ]x a b" Í   

                     0 ( ) ( ) ( ) ( ) ,
a b b b

a x x a
h t dt G t dt h t dt G t dt

l+

¢ ¢ñ ñ ñ ñ                                    (2.5.10)                             

                    
 
0 ( ) ( ) ( ) ( ) ,

a x x b

a a a a
h t dt G t dt h t dt G t dt

l+

¢ ¢ñ ñ ñ ñ                                   (2.5.11)                   

hold and the second inequality in (2.5.9) is valid if and only if   

         ( ) ( ) ( ) ( ) and ( ) 0.
a x x b b

a a a a x
h t dt G t dt h t dt G t dt G t dt

l+

¢ ²ñ ñ ñ ñ ñ                  (2.5.12)  

Theorem 2.5.3  Let ( )f x and ( )h x  be a nonnegative nonincreasing function on [ , ]a b  and 

( )uf  be an increasing convex function for 0u²  with (0) 0f = . If ( )g x  is a nonnegative 

nondecreasing function on  [ , ]a b  such that there exist a positive function 1( )g x  defined by the 

equation  

                                      

    

1

1

( )
( )

( )
( )

x
g x

g h x
g x

f
å õ
æ ö
ç ÷

=                                                            (2.5.13)             

for every [ , ]x a bÍ  and that 1( ) 1
b

a
g t dt¢ñ , then the following inequality is valid  
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( )( ) ( ) ( ) ( )

( ) ( )

b a

a a
b

a

a

a

f t g t dt h t f t dt

g t dt h t dt

l

l

f
f

+

+

å õ
æ ö
æ ö
æ ö
ç ÷

¢
ñ ñ

ñ ñ
                                      (2.5.14)         

where l is given by  ( ) ( )
a

a

b

a
h t dt g t dt

l

f
+ å õ

æ ö
ç ÷

=ñ ñ . 

Proof. Using Jensen's inequality for convex function (1.6.5) and the second inequality in (2.5.9), 

we have  

             
( ) ( )( ) ( )

( )

( ) ( ) ( ) ( )

( )( )

b

a

b

a

b a

a a
ab

aa

g t f t dt

g t dt h

f t g t dt h t f t dt

t dtg t dt

l

l

ff
f

+

+

å õ
æ ö
æ ö
æ ö
ç ÷

¢ ¢
ñ

ñ

ñ ñ

ññ
                (2.5.15)            

provided that  

              ( ) ( ) ( ) ( ) , ( ) 0
b b

a x

b x x

a a a
g t g t h t g t dt g t dtdt dt dtf

å õ
æ ö
ç ÷

¢ ²ñ ññ ñ ñ                   (2.5.16)          

hold for every [ , ]x a bÍ .  

The second inequality in (2.5.16) is trivially valid. On the other side, the increasing convex 

function f satisfies the condition (0) 0f = , that is ( ) ( ), 0 1ax a x af f¢ ¢ ¢, and we have   

1

1

1

1

1

1

1

1

1

1

( )

( )
( ) ( ) ( ) ( )

( )
( )

( )
( ) ( )

( )

( )
( )

( )
( )

( )

b

a

b

a

b

ab

ba

a

b

ab

ba

a

b x b x

a a a a

x

a

g t dt

g t dt
g t dt g t dt g t dt g t dt

g t
g t dt

g t
g t dt g t dt

g t dt

g t
g t dt

g t
g t dt

g t dt

f f

f

f

å õ
å õ æ ö
æ ö æ öç ÷ æ ö

ç ÷

å õå õ
æ öæ ö
æ öç ÷
æ ö
æ ö
æ ö
ç ÷

å õå õ
æ æ ö
æ ç ÷
æ
æ
æ
ç

=

¢

¢

ñ

ñ

ñ
ñ

ñ

ñ
ñ

ñ

ñ ñ ñ ñ

ñ

( )
x

a
g t dt

ö
ö
ö
ö
ö
÷

ñ

  

1

1

( )
( )

( )
( )

( ) ( ) .

b

a

b

a

x

a

x

a

g t
g t dt

g t

dt

g t dt

h t g t dt

f
å õ
æ ö
ç ÷

=

=

ñ

ñ

ñ

ñ
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Since ( )g t  is a nonnegative nondecreasing function and ( )h t  is a nonnegative nonincreasing 

function , we have from Theorem 2.5.1, 

( ) ( )

( ) ( )
,

( ) ( )

then ( ) ( ) .
b x

a a

x b

a a
x b

a a

x b

a a
h t dt h t dt

g t dt g t dt

h t dt h t dt

g t dt g t dt

¢

¢ñ ñ

ñ ñ

ñ ñ

ñ ñ

  

Hence the first inequality in (2.5.16) is also satisfied. ƴ   

 

Remark 2.5.1  If  ( ) 1h x =  in Theorem 2.5.3,  then (2.5.5) and (2.5.6) holds where 

( )
b

a
g t dtl få õ

æ ö
ç ÷

= ñ . 

 

2.6  Applications for Special Functions 

     Here we give some new applications related to the generalizations of Steffensen's inequality. 

The results are obtained using the same techniques as in [7].  

Application 2.6.1 Consider the Bessel function of the first kind 

                       
1

1
2 2

0

1
( ) ( ) (1 ) cos , Re( ) ,

2

v

v vJ z z t zt dt vg
-

= - >-ñ                               (2.6.1) 

where   

                                        

2
2

( ) .
1

2

v

v

z

z

v

g

p

å õ
æ ö
ç ÷

å õ
æ ö
ç ÷

=

G +

                                                                 (2.6.2) 

For the current work the interest is when both  z and v  are real. 

Let us consider the incomplete beta function 

                               
1 1

0
( , ; ) (1 ) ,

x

B x u u dua ba b - -= -ñ                                                     (2.6.3) 

and the Beta function given by 

                                
( ) ( )

( , ) ( , ; 1) ,
( )

B B
a b

a b a b
a b

G G
= =

G +
                                                    (2.6.4) 

then 
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2 ( )1 1 1 1 1
, , ; (1 )

2 2 2 2 2 ( )
v

v

J z
B v B v

z
l

g

å õ å õ
æ ö æ ö
ç ÷ ç ÷

+ - + - ¢   

                                         2 ,
1 1 1 1 1 1

, ; ,
2 2 2 2 2 2

B v B v vl
å õ å õ
æ ö æ ö
ç ÷ ç ÷

¢ + - + >                       (2.6.5) 

Proof.  Since  
1

2 2( ) (1 )
v

f t t
-

= -   is nonincreasing for [0, 1]tÍ  and  
1

2
v >  . 

Let ( ) cos ,g t zt=  we have that 1 ( ) 1g t- ¢ ¢ for [0, 1]tÍ , 1A=  and                          

1
( ) (cos 1),

2
G t zt= +   

            
1

0

1 1 sin
(cos 1) 1 .

2 2

z
zt dt

z
l

å õ
æ ö
ç ÷

= + = +ñ   

Applying Theorem 2.3.2, we have        

1 1 1 1
1 0

2 2 2 22 2 2 2

1 1 0 1

( )
(1 ) (1 ) (1 ) (1 ) ,

( )

v v v v
v

v

J z
t dt t dt t dt t dt

z

l l

l l g

- - - -

- -
- + - ¢ ¢ - + -ñ ñ ñ ñ    

then 

1 1 1 1
1 1 1

2 2 2 22 2 2 2

1 0 0

( )
(1 ) (1 ) (1 ) (1 ) ,

( )

v v v v
v

v

J z
t dt t dt t dt t dt

z

l l

l lg

-- - - -

-
- - - ¢ ¢ - - -ñ ñ ñ ñ    

that is, 

1 1 1 1
1 1 1

2 2 2 22 2 2 2

0 0 0 0

( )
(1 ) 2 (1 ) 2 (1 ) (1 ) .

( )

v v v v
v

v

J z
t dt t dt t dt t dt

z

l l

g

-- - - -

- - - ¢ ¢ - - -ñ ñ ñ ñ          (2.6.6) 

If we let 

                              

1
2 2

0
( ) (1 )

v

G t dt
a

a
-

= -ñ                                                                           (2.6.7) 

then (2.6.6) becomes 

                          
( )

(1) 2 (1 ) 2 ( ) (1).
( )

v

v

J z
G G G G

z
l l

g
- - ¢ ¢ -                                            (2.6.8) 

A simple change of variable 
2u t=   in (2.6.7) gives 

                            
      

2 1

2

1

2

0

1
( ) (1 )

2

v
G u u du

a

a
- -

= -ñ  

and so  
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2 .
1 1 1

( ) , ;
2 2 2

G B va a
å õ
æ ö
ç ÷

= +                                                               (2.6.9) 

Thus substituting (2.6.9) into (2.6.8) produces (2.6.5). ƴ 

The importance of inequality (2.6.5) is in the comparison between the two famous types of 

special functions in mathematics using the Steffensen's inequality. 

 

Application 2.6.2  We now use the original Steffensen's inequality (2.2.1), with 

            
                 

1

0

sin
cos .

z
zt dt

z
l= =ñ   

Applying Theorem 2.2.1, we have        

                             

1 1
1

2 22 2

1 0

( )
(1 ) (1 ) ,

( )

v v
v

v

J z
t dt t dt

z

l

l g

- -

-
- ¢ ¢ -ñ ñ    

then 

        

1 1 1
1 1

2 2 22 2 2

0 0 0

( )
(1 ) (1 ) (1 ) .

( )

v v v
v

v

J z
t dt t dt t dt

z

l l

g

-- - -

- - - ¢ ¢ -ñ ñ ñ                             (2.6.10) 

If we let 

                            

1
2 2

0
( ) (1 )

v

G t dt
a

a
-

= -ñ                                                             

then (2.6.10) becomes 

                                

      

( )
(1) (1 ) ( ).

( )
v

v

J z
G G G

z
l l

g
- - ¢ ¢                                                (2.6.11) 

Hence 

                                          

2 .
1 1

( ) , ;
2 2

1
2

G B va a
å õ
æ ö
ç ÷

= +                                                     (2.6.12)                

 

Thus substituting (2.6.12) into (2.6.11) produces 

 

2 2 ,
( )1 1 1 1 1 1 1 1 1 1

, , ; (1 ) , ;
2 2 2 2 2 2 ( ) 2 2 2 2

v

v

J z
B v B v B v v

z
l l

g

å õ å õ å õ
æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷

+ - + - ¢ ¢ + >. ƴ                         
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3.1  Introduction 

     In this chapter we introduce several interesting results on improvements of Steffensenôs 

integral inequality. We focus on the work of Pecaric and WuïSrivastava and give some 

generalizations. Moreover, we study weaker condition for this generalizations. At the end, we 

give  new applications for special means related to Steffensenôs inequality.    

 

3.2  Pecaric's Generalizations of Steffensen's Inequality 

     Josip Pecaric (born 3 September 1948) is one of the famous Croatian mathematicians in the 

recent 30 years. He published hundreds of papers in the field of inequalities. He is now a staff 

member of Zagreb university in Croatia.  

     In [23] Pecaric gave a generalization of Steffensenôs inequality which is very important in our 

study. We follow Pecaric and introduce more generalizations of Steffensenôs inequality in the 

following two theorems.    

Theorem 3.2.1 Let h be a positive integrable function on [ , ]a b  and  f  be an integrable function 

such that  ( ) ( )f x h x  is nonincreasing on  [ , ].a b  If g is a real-valued integrable function such 

that ( )0 1xg¢ ¢ for every [ , ],x a bÍ  then 

                                            ( ) ( ) ( )
b a

a a
f t g t dt f t dt

l+

¢ñ ñ                                                 (3.2.1)                                   

holds, where l is the solution of the equation 

                                             ( ) ( ) ( ) .
a b

a a
h ht dt t g t dt

l+

=ñ ñ                                               (3.2.2) 

If  ( ) ( )f x h x  is nondecreasing on [ , ],a b  then the reverse of inequality (3.2.1) holds. 

Proof. To prove (3.2.1) let us write :    

                     
( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ  

                ( ) ( ) ( ) ( ) ( )
a a b

a a a
f t dt f t g t dt f t g t dt
l l

l

+ +

+
= - -ñ ñ ñ  

                 [1 ( )] ( ) ( ) ( )
a b

a a
g t f t dt f t g t dt

l

l

+

+
= - -ñ ñ   

                 
( )

( )[1 ( )] ( ) ( ) .
( )

a b

a a

f t
h t g t dt f t g t dt

h t

l

l

+

+
= - -ñ ñ   

Since 
( )

( )

f t

h t
 is nonincreasing on [ , ],a a l+  for t a l¢ +, then 

( ) ( )

( ) ( )

f t f a

h t h a

l

l

+

+
²  and hence 
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( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ  

                 
( )

( )[1 ( )] ( ) ( )
( )

a b

a a

f a
h t g t dt f t g t dt

h a

l

l

l

l

+

+

+
² - -

+ ñ ñ   

                

( )
( ) ( ) ( ) ( ) ( )

( )

a a b

a a a

f a
h t dt h t g t dt f t g t dt

h a

l l

l

l

l

+ +

+

å õ
æ ö
ç ÷

+
= - -

+ ñ ñ ñ  

                 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

b a b

a a a

f a
h t g t dt h t g t dt f t g t dt

h a

l

l

l

l

+

+

å õ
æ ö
ç ÷

+
= - -

+ ñ ñ ñ   

                 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

a b a

a a a

b

a

f a
h t g t dt h t g t dt h t g t dt

h a

f t g t dt

l l

l

l

l

l

+ +

+

+

å õ
æ ö
ç ÷

+
= + -

+

-

ñ ñ ñ

ñ

 

                 

( ) ( )
( ) ( ) ( ) ( ) .

( ) ( )

b b

a a

f a f t
h t g t dt h t g t dt

h a h tl l

l

l + +

+
= -

+ ñ ñ  

Since 
( )

( )

f t

h t
 is nonincreasing on [ , ],a bl+  for t a l² +, then ,

( ) ( )

( ) ( )

f t f a

h t h a

l

l

+
¢

+
 also 

( )0 1tg¢ ¢, then ( ) ( ) ( )0 t t tg h h¢ ¢  and hence 

                     
( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ  

                

( ) ( )
( ) ( ) 0.

( ) ( )

b

a

f a f t
g t h t dt

h a h tl

l

l+

å õ
æ ö
ç ÷

+
= - ²

+ñ  ƴ 

 

Theorem 3.2.2 Let the conditions of Theorem 3.2.1 be fulfilled. Then 

                                    ( ) ( ) ( )
b b

a b
f t g t dt f t dt

l-
²ñ ñ                                               (3.2.3) 

holds, where l is the solution of the equation 

                                           
 

( ) ( ) ( ) .
b b

b a
h t dt h t g t dt

l-
=ñ ñ                                          (3.2.4) 

If  ( ) ( )f x h x  is nondecreasing on [ , ],a b  then the reverse of inequality (3.2.3) holds.                                                                                                       

Proof. By substitution ( ) 1 ( ),g x g x b al l­ - ­ - - in Theorem 3.2.1, we have
    

            
( )[1 g( )] ( )

b b

a a
f t t dt f t dt

l-

- ¢ñ ñ ,   
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then 

           ( ) ( )g( ) ( ) ,
b b b

a a a
f t dt f t t dt f t dt

l-

- ¢ñ ñ ñ  

thus  

          
( ) ( ) ( )g( ) ( ) ,

b b b b

a b a a
f t dt f t dt f t t dt f t dt
l l

l

- -

-
+ - ¢ñ ñ ñ ñ  and hence (3.2.3) holds. 

where l is the solution of the equation 

( ) ( )[1 ( )] ( ) ( ) ( ) ,
b b b b

a a a a
h h h ht dt t g t dt t dt t g t dt
l-

= - = -ñ ñ ñ ñ    

and thus 

 ( ) ( ) ( ) ( ) ( ) ,
b b b b

a a b a
h h h ht dt t dt t dt t g t dt
l l

l

- -

-
= + -ñ ñ ñ ñ  hence (3.2.4) holds. ƴ  

Remark 3.2.1 For ( ) 1,h t = we have the well-known Steffensenôs inequality (2.2.1). 

 

3.3  WuïSrivastava Generalizations of Steffensen's Inequality 

     Wu and Srivastava gave some improvements and generalizations of Steffensen's inequality. 

     In this section we introduce several generalized versions of Steffensenôs inequality (2.2.1). 

      

     The following Lemma will be used in proving the following theorems.   

Lemma 3.3.1[28]  Let  f, g and h be integrable functions defined on [ , ].a b  Suppose also that l 

is a real number such that   

                                       
( ) ( ) ( ) .

a b b

a a b
h ht dt g t dt t dt
l

l

+

-
==ñ ñ ñ                                        (3.3.1)          

Then  

            ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b a

a a
f t g t dt f t h t f t f a h t g t dt

l

l
+

è øè øê úê ú= - - + -ñ ñ   

                                                              [ ]( ) ( ) ( )
b

a
f t f a g t dt

l
l

+
+ - +ñ                              (3.3.2) 

and 

          ( ) ( ) ( ) ( ) (  )
b b

a a
f t g t dt f t f b g t dt

l

l
-

è øê ú= - -ñ ñ   

                                     ( )( ) ( ) ( ) ( ) ( ) ( )
b

b
f t h t f t f b h t g t dt

l
l

-
è øè øê úê ú+ - - - -ñ         (3.3.3) 

 

Proof. The assumptions of the Lemma imply that     
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               a a bl¢ + ¢   and   .a b bl¢ - ¢    

Firstly, we prove the integral identity (3.3.2) 

       ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
a b

a a
f t h t f t f a h t g t dt f t g t dt

l

l
+

-è øè øê úê ú- - + -ñ ñ   

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
a a

a a
f t h t f t g t f t f a h t g t dt f t g t dt

l l

l
+ +

è øè øê úê ú= - - - + - +ñ ñ  

                                          ( ) ( ) ( ) ( )
a b

a a
f t g t dt f t g t dt

l

l

+

+
- -ñ ñ  

    ( ) ( ) ( ) ( ) ( )
a b

a a
f a h t g t dt f t g t dt

l

l
l

+

+
= -è øê ú+ -ñ ñ   

    ( )( )( ) ( ) ( ) ( )
a

a

a b

a a
g t dtf a h t dt f t g t dt

ll

l
l

++

+
= -+ -ññ ñ                                        (3.3.4) 

    ( )( )( ) ( ) ( ) ( )
a

a

b b

a a
g t dtf a g t dt f t g t dt

l

l
l

+

+
= -+ -ññ ñ  

    ( )( ) ( )( ) ( ) ( ) ( )
b a

a a

a b

a a
g t dt g t dtf a g t dt f t g t dt

l

l

l

l
l

+

+

+

+
= -+ + -ñ ññ ñ  

    ( )( ) ( ) ( )
b

a

b

a
g t dtf a f t g t dt

l l
l

+ +
= -+ ñ ñ   

    .( ) ( ) ( )
b

a
f a f t g t dt

l
l

+
è øê ú= + -ñ                                                                                    (3.3.5) 

By rearranging (3.3.5), we are led to the desired integral identity (3.3.2) asserted by the Lemma. 

    

    Secondly, we observe that the following assumption of the Lemma: 

                    ( ) ( )
b b

b a
h t dt g t dt

l-
=ñ ñ  

implies that 

                 .( ) ( ) ( )
b b b

a a a
h ht dt t dt g t dt
l-

=--ñ ñ ñ  

Hence 

                 
( )

.( ) [ ( ) ( )]
b

a a

a b a
h ht dt t g t dt

l+ - -
= -ñ ñ  

By appealing to the integral identity (3.3.2) with the following substitutions: 

b al l­ - - and ( ) ( ) ( ),g t h t g t­ - then we have 

[ ] ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a
h t g tf t dt f t h t f t f b h t h t g t dt

l

l
-

- è øè øê úê ú= - - - - +ñ ñ  

                                                
[ ][ ]( ) ( ) ( ) ( )

b

b
f t f hb t g t dt

l
l

-
+ - - -ñ    

or   
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 [ ]( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
bb b b

aa a a
f t ff t h t dt f t g t dt f t h t dt b g t dt

ll

l
--

- -= - -ññ ñ ñ  

 
                                                       

[ ][ ]( ) ( ) ( ) ( )
b

b
f t f hb t g t dt

l
l

-
+ - - -ñ  

or   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b b b

a b a a
f t h t dt f t h t dt f t g t dt f t h t dt

l l

l

- -

-
+ - =ñ ñ ñ ñ  

                           [ ]( ) ( ) ( )
b

a
f t f b g t dt

l

l
-

-- -ñ [ ][ ]( ) ( ) ( ) ( ) .
b

b
f t f hb t g t dt

l
l

-
+ - - -ñ   

Thus, the integral identity (3.3.3) holds. 

The proof of the Lemma is thus completed. ƴ 

 

     The following theorem provides a generalization to the classical Steffensen's inequality. 

Theorem 3.3.1[28]Let  f, g and h be integrable functions defined on [ , ]a b with  f  nonincreasing. 

Also let ( ) ( ),0 t tg h¢ ¢  [ , ].t a bÍ  

(a) Then  

             ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) (  )
b b

b b
f t h t dt f t h t f t f b h t g t dt

l l
l

- -
è øè øê úê ú- - - -¢ñ ñ   

                                                  ( ) ( ) ,
b

a
f t g t dt¢ñ                                                                    (3.3.6) 

     where l is given by 

                                      
      

.( ) ( )
b b

b a
h t dt g t dt
l-

=ñ ñ                                                          (3.3.7) 

(b) Then 

                 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b a

a a
f t g t dt f t h t f t f a h t g t dt

l

l
+

è øè øê úê ú¢ - - + -ñ ñ   

                                             ( ) ( ) ,
a

a
f t h t dt

l+
¢ñ                                                                (3.3.8) 

     where l is given by 

                                       .( ) ( )
a b

a a
h t dt g t dt
l+

=ñ ñ                                                   (3.3.9) 

If f  is a nondecreasing function, then the reverse inequalities in (3.3.6) and (3.3.8) hold. 

Proof of part(a). Since f  is nonincreasing on [ , ],a b l- for ,t b l¢ - then ( ) ( ),f t f b l² -             

so ( ) ( ) 0.f t f b l- - ² Then 

                                     
 ( ) ( ) 0.( )

b

a
f t f b g t dt

l

l
-

è øê ú- ²-ñ                                         (3.3.10) 

Also, since  f  is nonincreasing on [ , ],b bl- for t b l² -, then ( ) ( )f t f b l¢ - , so               
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( ) ( ) 0b tf fl- - ²  and since 0 ( ) ( ),g t h t¢ ¢  then 0 ( ) ( )g t h t²- ²-, so 

0 ( ) ( ) ( ).h t g t h t¢ - ¢  Then  

                              ( ) ( ) ( ) ( ) 0.
b

b
f b f t h t g t dt

l
l

-
è øè øê úê ú- - - ²ñ                             (3.3.11) 

Using the integral identity (3.3.3) together with the integral inequalities (3.3.10) and (3.3.11), we 

find that 

( ) ( ) ( ) ( ) (  )
b b

a a
f t g t dt f t f b g t dt

l

l
-

è øê ú= - -ñ ñ   

                                     ( )( ) ( ) ( ) ( ) ( ) ( )
b

b
f t h t f t f b h t g t dt

l
l

-
è øè øê úê ú+ - - - -ñ    

                           ( )( ) ( ) ( ) ( ) ( ) ( )
b

b
f t h t f t f b h t g t dt

l
l

-
è øè øê úê ú² - - - -ñ   

                           .( ) ( )
b

b
f t h t dt

l-
²ñ  ƴ      

Proof of part(b). Since  f  is nonincreasing on [ , ],a bl+  for t a l² +, then ( ) ( ),f t f a l¢ +              

so ( ) ( ) 0.f t f a l- + ¢ Then 

                                    
 ( ) ( ) 0.( )

b

a
f t f a g t dt

l
l

+
è øê ú+ ¢-ñ                                                (3.3.12) 

Also, since  f  is nonincreasing on [ , ],a a l+  for t a l¢ +, then ( ) ( )f t f a l² + , so               

( ) ( ) 0tf a fl-+ ¢ and since 0 ( ) ( )g t h t¢ ¢ , then 0 ( ) ( )g t h t²- ²-, so 

0 ( ) ( ) ( ).h t g t h t¢ - ¢  Then  

                              
      

( ) ( ) ( ) ( ) 0.
a

a
f a f t h t g t dt

l

l
+

è øè øê úê ú+ - - ¢ñ                                (3.3.13) 

Using the integral identity (3.3.2) together with the integral inequalities (3.3.12) and (3.3.13), we 

find that  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b a

a a
f t g t dt f t h t f t f a h t g t dt

l

l
+

è øè øê úê ú= - - + -ñ ñ   

                                                                             [ ]( ) ( ) ( )
b

a
f t f a g t dt

l
l

+
- ++ñ      

                           ( )( ) ( ) ( ) ( ) ( ) ( )
a

a
f t h t f t f a h t g t dt

l

l
+

è øè øê úê ú¢ - - + -ñ   

                           .( ) ( )
a

a
f t h t dt

l+

¢ñ  ƴ  

 

Remark 3.3.1   It is clear that Wu and Srivastava deduced a modified version of Mercerôs 

inequality (2.4.7) using Theorem 3.3.1.  
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     In particular, upon setting ( ) 1h t =  in (3.3.6) and (3.3.8) of Theorem 3.3.1, we obtain the 

following refinement of Steffensenôs inequality (2.2.1). 

 

Corollary 3.3.1  Let  f, g and h be integrable functions defined on[ , ]a b with  f  nonincreasing. 

Also let ( )
b

a
g t dtl=ñ   and  0 ( ) 1g t¢ ¢, [ , ].t a bÍ  

(a) Then  

                   ( )( ) ( ) ( ) ( ) 1 ( ) 
b b

b b
f t dt f t f t f b g t dt

l l
l

- -
è øè øê úê ú- - -¢ -ñ ñ   

                                                 ( ) ( ) .
b

a
f t g t dt¢ñ                                                               (3.3.14) 

(b) Then 

                
 

( )( ) ( ) ( ) ( ) ( ) 1 ( )
b a

a a
f t g t dt f t f t f a g t dt

l

l
+

è øè øê úê ú¢ - - + -ñ ñ   

                                            ( ) .
a

a
f t dt

l+
¢ñ                                                                        (3.3.15) 

 

If   f  is a nondecreasing function, then the reverse inequalities in (3.3.14) and (3.3.15) hold. 

 

     In the following corollaries Pecaric, et al gave another refined version of the results given by 

Pecaric in Theorems 3.2.1 and 3.2.2. 

Corollary 3.3.2[21] Let h be a positive integrable function on [ , ]a b  and  f, g  be integrable 

functions on [ , ]a b  such that  ( ) ( )f x h x  is nonincreasing on [ , ]a b and 0 ( ) 1g x¢ ¢ for 

every [ , ].x a bÍ  Then  

             

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) 1 ( )

b a

a a

f t f a

h t h a
f t g t dt f t h t g t dt

l l

l

+å õè ø+
è øæ öé ù ê úæ ö+ê úç ÷

¢ - - -ñ ñ  

                                       
( )

a

a
f t dt

l+
¢ñ                                                                            (3.3.16) 

where l is given by (3.2.2). 

Proof. Take ( ) ( ) ( )g t h t g t­  and  ( ) ( ) ( )f t f t h t­ in Theorem 3.3.1 (b). ƴ  

 

Corollary 3.3.3[21] Let h be a positive integrable function on [ , ]a b  and  f, g  be integrable 

functions on [ , ]a b  such that ( ) ( )f x h x  is nonincreasing on [ , ]a b  and0 ( ) 1g x¢ ¢ for every 

[ , ].x a bÍ  Then  
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( ) ( )

( ) ( )
( ) ( ) 1 (  ( ) )

b b

b b

f t f b

h t h b
f t dt f t h t g t dt

l l

l

l- -

å õè ø-
è øæ öé ù ê úæ ö-ê úç ÷

- -¢ -ñ ñ   

                                         ( ) ( )
b

a
f t g t dt¢ñ                                                                       (3.3.17) 

where l is given by (3.2.4). 

Proof. Take ( ) ( ) ( )g t h t g t­  and ( ) ( ) ( )f t f t h t­ in Theorem 3.3.1 (a). ƴ  

 

     We now introduce more generalizations obtained by WuïSrivastava. 

Theorem 3.3.2[28] Let f, g, h and y be integrable functions defined on [ , ]a b  with f  

nonincreasing. Also let ( ) ( ) ( ) ( ),0 t g t h t ty y¢ -¢ ¢  [ , ].t a bÍ  

(a) Then  

             ( ) ( ) ( ) (  ) ( )
b

b

b

a
f t h t dt f t f b t dt

l
l y

-
è øê ú-+ -ñ ñ ( ) ( )

b

a
f t g t dt¢ñ            (3.3.18)                                         

     where l is given by (3.3.7). 

(b) Then 

              ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
b a

a

b

a a
f t g t dt f t h t dt f t f a t dt

l

l y
+

¢ è øê ú- - +ñ ñ ñ           (3.3.19) 

     where l is given by (3.3.9). 

Proof of part(a). By the assumptions that the function  f  is nonincreasing on [ , ]a b  and that  

                ( ) ( ) ( ) ( )0 t t t tg hy y¢ -¢ ¢ , [ , ]t a bÍ , 

it follows that 

                
( ) ( ) ( ) ( ) ( ) ( ) )  (

b b

a b
f t f b g t dt f b f t h t g t dt

l

l
l l

-

-
è ø è øè øê ú ê úê ú- - + - - -ñ ñ        

            
( ) ( ) ( ) ( ) ( ) ( ) (  )

b b

a b
f t f b g t dt f b f t h t g t dt

l

l
l l

-

-
= è øê ú- - + - - -ñ ñ   

            
 ( ) ( ) ( ) ( ) ( ) ( )

b b

a b
f t f b t dt f b f t t dt

l

l
l y l y

-

-
² - - + - -ñ ñ        

            
( ) ( ) ( ) .

b

a
f t f b t dtl yè øê ú= - -ñ                                                                          (3.3.20) 

Using (3.3.3) and (3.3.20), we obtain 

 (( ) ( ) ( ) ( ) ( ) ( ) ( )  
b b b

a b a
f t g t dt f t h t dt f t f b g t dt

l

l
l

-

-
è øê ú= + - -ñ ñ ñ   

                                                                                 )( ) ( ) ( ) ( )
b

b
f b f t h t g t dt

l
l

-
+ è øè øê úê ú- - -ñ   

       
                     

( ) ( ) ( ) ( ) ( ) .
b b

b a
f t h t dt f t f b t dt

l
l y

-
è øê ú² + - -ñ ñ  ƴ                                

Proof of part(b). By the assumptions that the function  f  is nonincreasing on [ , ]a b  and that  
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                ( ) ( ) ( ) ( ),0 t t t tg hy y¢ -¢ ¢  [ , ],t a bÍ  

it follows that 

               
( ) ( ) ( ) ( ) ( ) ( ) ( )

b

a

a

a
f t f a h t g t dt f a f t g t dt

l

l

l l
+

+

è øè ø è øê úê ú ê ú- + - + + -ññ   

            ( ) ( ) ( ) ( ) ( ) ( ) ( )
b

a

a

a
f t f a h t g t dt f a f t g t dt

l

l

l l
+

+

è øê ú= - + - + + -ññ                                

            ( )( ) ( ) ( ) ( ) ( )
b

a

a

a
f t f a t dt f a f t t dt

l

l

l y l y
+

+

² - + + + -ññ                                         

           
 

[ ] .( ) ( ) ( )
b

a
f t f a t dtl y= - +ñ                                                                            (3.3.21)  

Using (3.3.2) and (3.3.21), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b a a

a a a
f t g t dt f t h t dt f t f a h t g t dt

l l

l
+ +å

è øè øæ ê úê ú
ç

= - - + -ñ ñ ñ   

                                                                                                 
( ) ( ) ( )

b

a
f a f t g t dt

l
l

+

õ
è ø öê ú

÷
+ + -ñ   

                      
     

[ ] .( ) ( ) ( ) ( ) ( )
a b

a a
f t h t dt f t f a t dt

l

l y
+

¢ - - +ñ ñ  ƴ 

Remark 3.3.2  It is obvious that the modified version of Mercerôs inequality (2.4.7) follows 

from Theorem 3.3.2 with ( ) 0.ty =   

   

     By putting ( ) 1h t =  and ( ) ,t My =   0 , 1 2M è øê úÍ  in (3.3.18) and (3.3.19), we deduce 

Corollary 3.3.4. 

Corollary 3.3.4 Let  f  and g be integrable functions defined on [ , ]a b  with  f  nonincreasing. 

Also let ( )
b

a
g t dtl=ñ   and  0 ( ) 1 ,M g t M¢ ¢ ¢ - [ , ].t a bÍ  

(a) Then  

                 
   

( ) ( ) ( ) 
b

b

b

a
f t dt M f t f b dt

l
l

-
- -+ñ ñ ( ) ( ) .

b

a
f t g t dt¢ñ   

                (3.3.22) 

(b) Then 

              
      

.( ) ( ) ( ) ( ) (  )
b a

a

b

a a
f t g t dt f t dt M f t f a dt

l

l
+

¢ - +-ñ ñ ñ                   (3.3.23) 

                                                                                                                                                     

 

Remark 3.3.3  Clearly, the integral inequalities (3.3.22) and (3.3.23) are a sharpened and 

generalized version of Steffensenôs inequality (2.2.1). Indeed, in its special case when M = 0, the 

inequalities (3.3.22) and (3.3.23) would reduce to the classical Steffensenôs inequality (2.2.1).  
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     Using Theorem 3.3.2, Pecaric, et al obtained sharpened and generalized versions of Theorems 

3.2.1 and 3.2.2. This versions are given in following corollaries. 

 

Corollary 3.3.5[21] Let h be a positive integrable function on [ , ]a b  and f, g, y be      

integrable functions on [ , ]a b  such that ( ) ( )f t h t  is nonincreasing on [ , ]a b  and                

( ) ( ) 1 ( ),0 t t tgy y¢ -¢ ¢  [ , ].t a bÍ  Then  

                
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) 

b a

a

b

a a

f t f a

h t h a
f t g t dt f t dt h t t dt

l l

l
y

+ è ø+
¢ é ù

+ê ú
- -ñ ñ ñ         (3.3.24) 

where l is given by (3.2.2). 

Proof. Take ( ) ( ) ( ),g t h t g t­ ( ) ( ) ( )f t f t h t­ and ( ) ( ) ( )t h t ty y­ in Theorem 3.3.2(b).ƴ 

 

Corollary 3.3.6[21] Let h be a positive integrable function on [ , ]a b  and f, g, y be      

integrable functions on [ , ]a b  such that ( ) ( )f t h t  is nonincreasing on [ , ]a b  and                

( ) ( ) 1 ( ),0 t t tgy y¢ -¢ ¢  [ , ].t a bÍ  Then  

             
( ) ( )

( ) ( )
( ) ( ) (  )

b

b

b

a

f t f b

h t h b
f t dt h t t dt

l

l

l
y

-

è ø-
é ù

-ê ú
-+ñ ñ ( ) ( )

b

a
f t g t dt¢ñ            (3.3.25)                                         

where l is given by (3.2.4). 

Proof. Take ( ) ( ) ( ),g t h t g t­ ( ) ( ) ( )f t f t h t­ and ( ) ( ) ( )t h t ty y­ in Theorem 3.3.2(a).ƴ 

 

     Finally, we present a general result on a considerably improved version of Steffensenôs 

inequality (2.2.1) given by WuïSrivastava by introducing the additional parameters 
1l and 2l . 

Theorem 3.3.3[28] Let  f  and g be integrable functions defined on [ , ]a b  with  f  nonincreasing. 

Also let  

                    
1 20 ( )

b

a
g t dt b all ¢¢ ¢ ¢ -ñ    

and  

                     0 ( ) 1 ,M g t M¢ ¢ ¢ -  [ , ].t a bÍ  

(a) Then  

    
1

1( ) ( ) ( ) ( ) ( )
b b b b

b a a a
f t dt f b g t dt M f t f b g t dt dt

l
l

-

å õ å õ
æ ö æ ö
ç ÷ ç ÷

+ - + - -ñ ñ ñ ñ                                                                                                                                                  
          

( ) ( )
b

a
f t g t dt¢ñ                                                                                                                (3.3.26)    

(b) Then  



55 
 

    ( ) ( )
b

a
f t g t dtñ                                                                                                                          

2

2( ) ( ) ( ) ( ) ( )
a b b b

a a a a
f t dt f b g t dt M f t f a g t dt dt

l

l
+ å õ å õ

¢ æ ö æ ö
ç ÷ ç ÷

- - - - +ñ ñ ñ ñ            (3.3.27) 

Proof of part(a).  We have 

                    
1

1( ) ( ) ( ) ( ) ( )
b b b

a b a
f t g t dt f t dt f b g t dt

l
l

-

å õ
æ ö
ç ÷

- - -ñ ñ ñ      

            
1

1( ) ( ) ( ) ( ) ( ) ( )
b b b

a b a
f t g t dt f t dt f b g t dt f b

l
l

-
= - - +ñ ñ ñ     

            
1 1

( ) ( ) ( ) ( ) ( ) ( )
b b b b

a b a b
f t g t dt f t dt f b g t dt f b dt

l l- -
= - - +ñ ñ ñ ñ     

            
1

( ) ( ) ( ) ( ) ( )
b b

a b
f t f b g t dt f t f b dt

l-
= è ø è øê ú ê ú- - -ñ ñ     

            
1

( ) ( ) ( ) ( ) ( )
b b

a b
f t f b g t dt f b f t dt

l-
= è ø è øê ú ê ú- + -ñ ñ     

            
( )

( ) ( ) ( ) ( ) ( ) ,b

a

b b

a b g t dt
f t f b g t dt f b f t dt

-
è ø è øê ú ê ú² - + -

ññ ñ                               (3.3.28) 

where the last inequality follows from the assumption that 

                    
1 2( )

b

a
b b b g t dt b all² - ² - ² - ²ñ    

and  

                    ( ) ( ) 0, [ , ].f t f b t a b- ² Í    

On the other hand, from the hypothesis of Theorem 3.3.3, we conclude that the function 

( ) ( )f t f b-  is integrable and nonincreasing on [ , ].a b  Thus, by using Corollary 3.3.4  with the 

following substitution:  ( ) ( ) ( )f t f t f b­ - in (3.3.22), we find that 

   
( )

( ) ( ) ( ) ( ) ( )b

a

b b

b g t dta
f t f b g t dt f b f t dt

-
è ø è øê ú ê ú- + -

ññ ñ   

                      ( ) .( ) ( )
b

a

b

a
M f t f b g t dt dt² - -ññ                                                         (3.3.29)  

By combining the integral inequalities (3.3.28) and (3.3.29), we obtain   

    
1

1( ) ( ) ( ) ( ) ( )
b b b

a b a
f t g t dt f t dt f b g t dt

l
l

-

å õ
æ ö
ç ÷

- - -ñ ñ ñ     

                      ( ) .( ) ( )
b

a

b

a
M f t f b g t dt dt² - -ññ                                                          (3.3.30) 

Thus, the inequality (3.3.26) holds. ƴ                                                       
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Proof of part(b).  We have 

                    
2

2( ) ( ) ( ) ( ) ( )
b a b

a a a
f t g t dt f t dt f b g t dt

l

l
+ å õ

æ ö
ç ÷

- + -ñ ñ ñ      

            
2

2( ) ( ) ( ) ( ) ( ) ( )
b a b

a a a
f t g t dt f t dt f b f b g t dt

l

l
+

= - + -ñ ñ ñ     

            
2 2

( ) ( ) ( ) ( ) ( ) ( )
b a a b

a a a a
f t g t dt f t dt f b dt f b g t dt

l l+ +

= - + -ñ ñ ñ ñ     

            
2

( ) ( ) ( ) ( ) ( )
b a

a a
f t f b g t dt f t f b dt

l+

= è ø è øê ú ê ú- - -ñ ñ     

            
( )

( ) ( ) ( ) ( ) ( ) ,

b

a
b g t dt

a

a

a
f t f b g t dt f t f b dt

+
è ø è øê ú ê ú

ñ
¢ - - -ñ ñ                                (3.3.31) 

where the last inequality follows from the assumption that 

                    
1 2( )

b

a
a a a g t dt a bll ¢¢ + ¢ + + ¢ñ    

and  

                    ( ) ( ) 0, [ , ].f t f b t a b- ² Í    

On the other hand, from the hypothesis of Theorem 3.3.3, we conclude that the function 

( ) ( )f t f b-  is integrable and nonincreasing on [ , ]a b . Thus, by using Corollary 3.3.4  with the 

following substitution: ( ) ( ) ( )f t f t f b­ - in (3.3.23), we find that 

   
( )

( ) ( ) ( ) ( ) ( )

b

a
b a g t dt

aa
f t f b g t dt f t f b dt

+

è ø è øê ú ê ú
ñ

- - -ñ ñ   

                      ( ) .( ) ( )
b

a

b

a
M f t f a g t dt dt¢- - +ññ                                                      (3.3.32)  

By combining the integral inequalities (3.3.31) and (3.3.32), we obtain  

    
2

2( ) ( ) ( ) ( ) ( )
b a b

a a a
f t g t dt f t dt f b g t dt

l

l
+ å õ

æ ö
ç ÷

- + -ñ ñ ñ        

                       ( ) .( ) ( )
b

a

b

a
M f t f a g t dt dt¢- - +ññ                                                     (3.3.33) 

Thus, the inequality (3.3.27) holds. ƴ  

 

Remark 3.3.4.  It is clear that the classical Steffensenôs inequality (2.2.1) would follow as a 

special case of the inequalities (3.3.26) and (3.3.27) when 0M =  and 1 2l l= . Moreover, it is 

worth noticing that the integral inequalities (3.3.26) and (3.3.27) together is stronger than the 

classical Steffensenôs inequality (2.2.1) if ( ) 0f b ² . 
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3.4  Weaker Conditions for Pecaric's Generalizations  

     In this section we study weaker conditions for the parameter l in Pecaric's generalizations. 

We present here two theorems and two corollaries given by Pecaric and Kalamir, and these 

theorems are due to [18]. 

 

Theorem 3.4.1  Let h be a positive integrable function on [ , ]a b  and  f  be a nonnegative 

integrable function such that ( ) ( )f x h x  is nonincreasing on  [ , ].a b  If g be an integrable 

function on  [ , ]a b  such that ( )0 1xg¢ ¢ for every [ , ],x a bÍ  then 

                                         ( ) ( ) ( )
b a

a a
f t g t dt f t dt

l+

¢ñ ñ                                                   (3.4.1)                                   

holds, where l is given by 

                                            ( ) ( ) ( )
a b

a a
h ht dt t g t dt

l+

²ñ ñ                                                 (3.4.2) 

If  ( ) ( )f x h x  is nondecreasing on [ , ],a b  then the reverse of the inequality in (3.4.1) holds, 

where l is given by (3.4.2) with the reverse inequality.  

Proof. To prove (3.4.1) let us write :    

                    
( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ  

                ( ) ( ) ( ) ( ) ( )
a a b

a a a
f t dt f t g t dt f t g t dt

l l

l

+ +

+
= - -ñ ñ ñ  

                 [1 ( )] ( ) ( ) ( )
a b

a a
g t f t dt f t g t dt

l

l

+

+
= - -ñ ñ   

                 
( )

( )[1 ( )] ( ) ( ) .
( )

a b

a a

f t
h t g t dt f t g t dt

h t

l

l

+

+
= - -ñ ñ   

Since 
( )

( )

f t

h t
 is nonincreasing on [ , ],a a l+  for t a l¢ +, then 

( ) ( )

( ) ( )

f t f a

h t h a

l

l

+

+
²   and hence  

 

                    
( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ  

                 
( )

( )[1 ( )] ( ) ( )
( )

a b

a a

f a
h t g t dt f t g t dt

h a

l

l

l

l

+

+

+
² - -

+ ñ ñ   

               

( )
( ) ( ) ( ) ( ) ( )

( )

a a b

a a a

f a
h t dt h t g t dt f t g t dt

h a

l l

l

l

l

+ +

+

å õ
æ ö
ç ÷

+
= - -

+ ñ ñ ñ  

                 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

b a b

a a a

f a
h t g t dt h t g t dt f t g t dt

h a

l

l

l

l

+

+

å õ
æ ö
ç ÷

+
² - -

+ ñ ñ ñ                   
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( )
( ) ( ) ( ) ( ) ( ) ( )

( )

a b a

a a a

f a
h t g t dt h t g t dt h t g t dt

h a

l l

l

l

l

+ +

+

å õ
+æ ö

ç ÷

+
= -

+ ñ ñ ñ   

                      

( ) ( )
b

a
f t g t dt

l+
-ñ  

                 

( ) ( )
( ) ( ) ( ) ( ) .

( ) ( )

b b

a a

f a f t
h t g t dt h t g t dt

h a h tl l

l

l + +

+
= -

+ ñ ñ  

Since 
( )

( )

f t

h t
 is nonincreasing on [ , ],a bl+  for t a l² +, then ,

( ) ( )

( ) ( )

f t f a

h t h a

l

l

+
¢

+
 also 

( )0 1,tg¢ ¢ then ( ) ( ) ( ),0 t t tg h h¢ ¢  and  f  be a nonnegative integrable function and hence 

                    
( ) ( ) ( )

a b

a a
f t dt f t g t dt

l+

-ñ ñ  

                 

( ) ( )
( ) ( ) 0.

( ) ( )

b

a

f a f t
g t h t dt

h a h tl

l

l+

å õ
æ ö
ç ÷

+
= - ²

+ñ  ƴ 

 

Theorem 3.4.2   Let the conditions of Theorem 3.4.1 be fulfilled. Then 

                                     ( ) ( ) ( )
b b

a b
f t g t dt f t dt

l-
²ñ ñ                                                        (3.4.3) 

holds, where l is given by 

                                       ( ) ( ) ( ) .
b b

b a
h t dt h t g t dt

l-
¢ñ ñ                                                       (3.4.4) 

If  ( ) ( )f x h x  is nondecreasing on [ , ],a b then the reverse of the inequality in (3.4.3) holds, 

where l is given by (3.4.4) with the reverse inequality.  

Proof. By substitution ( ) 1 ( ),g t g t b al l­ - ­ - - in Theorem 3.4.1,  we have
      

              
( )[1 g( )] ( ) ,

b b

a a
f t t dt f t dt

l-

- ¢ñ ñ   

then 

             ( ) ( )g( ) ( ) ,
b b b

a a a
f t dt f t t dt f t dt

l-

- ¢ñ ñ ñ    

thus  

            
( ) ( ) ( )g( ) ( ) ,

b b b b

a b a a
f t dt f t dt f t t dt f t dt

l l

l

- -

-
+ - ¢ñ ñ ñ ñ    

hence (3.4.3) holds. 
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Where l is given by 

                                    
( ) ( )[1 ( )] ,

b b

a a
h ht dt t g t dt

l-

² -ñ ñ   

so  

                         
( ) ( ) ( ) ( ) ,

b b b

a a a
h h ht dt t dt t g t dt

l-

² -ñ ñ ñ   

thus 

                       ( ) ( ) ( ) ( ) ( ) ,
b b b b

a a b a
h h h ht dt t dt t dt t g t dt

l l

l

- -

-
² + -ñ ñ ñ ñ   

hence (3.4.4) holds. ƴ  

 

     Taking ( ) 1h t =  in Theorems 3.4.1 and 3.4.2 we obtain the following weaker conditions for 

the parameter l in Steffensenôs inequality.  

 

Corollary 3.4.1  Let  f  be a nonnegative nonincreasing function on [ , ]a b and g be an integrable 

function on [ , ],a b with ( )0 1xg¢ ¢ for every [ , ].x a bÍ  Then 

                                         ( ) ( ) ( )
b a

a a
f t g t dt f t dt

l+

¢ñ ñ                                                   (3.4.5)                                   

holds, where  

                                                  .( )
b

a
g t dtl²ñ                                                                     (3.4.6) 

If  ( )f x  is nondecreasing on [ , ],a b  then the reverse of the inequality in (3.4.5) holds, where l 

is given by (3.4.6) with the reverse inequality.  

 

Corollary 3.4.2  Let  f  be a nonnegative nonincreasing function on [ , ]a b and g be an integrable 

function on [ , ],a b with ( )0 1xg¢ ¢ for every [ , ].x a bÍ Then 

                                         ( ) ( ) ( )
b b

a b
f t g t dt f t dt

l-
²ñ ñ                                                   (3.4.7)                                   

holds, where  

                                                  .( )
b

a
g t dtl¢ñ                                                                     (3.4.8) 

If  ( )f x  is nondecreasing on [ , ],a b  then the reverse of the inequality in (3.4.7) holds, where l 

is given by (3.4.8) with the reverse inequality.  
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Now, we give some examples to explain the results introduced in Theorems 3.4.1 and 3.4.2. 

Example 3.4.1  Let ( ) 1, ( ) 1
3

t
h t g t= = - and ( ) ,tf t e-= then 

( )

( )
tf t

e
h t

-= is decreasing 

with [ , ] [0, 3].a b = By simple calculations from (3.4.2) we have   

 
0 3

0 0
1 ,

3

t
dt dt
l+ å õ

æ ö
ç ÷

² -ñ ñ  so 

3
2

0

,
6

t
tl
å õ
æ ö
ç ÷
² -  and then .

3

2
l²   

If 1,l=  then (3.4.1) becomes  

3 1

0 0
1 ,

3
t tt

e dt e dt- -å õ
æ ö
ç ÷
- <ñ ñ  then ( )

3
1

0
0

1
1 ,

3 3
t t tt

e e e- - -å õå õ
æ öæ ö

ç ÷ç ÷
- - + < -  so 0.6832 0.6321<  

which is a contradiction. The reason is because 1 3 2l= < .  

If 3 2,l=  then (3.4.1) becomes  

3 3 2

0 0
1 ,

3
t tt

e dt e dt- -å õ
æ ö
ç ÷
- <ñ ñ  then ( )

3
3 2

0
0

1
1 ,

3 3
t t tt

e e e- - -å õå õ
æ öæ ö

ç ÷ç ÷
- - + < -  so 0.6832 0.7768<  

which is true. 

If 2,l=  then (3.4.1) becomes  

3 2

0 0
1 ,

3
t tt

e dt e dt- -å õ
æ ö
ç ÷
- <ñ ñ  then ( )

3
2

0
0

1
1 ,

3 3
t t tt

e e e- - -å õå õ
æ öæ ö

ç ÷ç ÷
- - + < -  so 0.6832 0.8646<  

which is true. 

 

 

Example 3.4.2  Let ( ) 1, ( ) 1
3

t
h t g t= = - and ( ) ,tf t e-= then  

( )

( )
tf t

e
h t

-= is decreasing     

with [ , ] [0, 3].a b = By simple calculations from (3.4.4) we have    

 
3 3

3 0
1 ,

3

t
dt dt
l-

å õ
æ ö
ç ÷

¢ -ñ ñ  so 

3
2

0

,
6

t
tl
å õ
æ ö
ç ÷
¢ -  then .

3

2
l¢   

If 1,l=  then (3.4.3) becomes  

3 3

0 2
1 ,

3
t tt

e dt e dt- -å õ
æ ö
ç ÷
- >ñ ñ  then ( )

3
3

2
0

1
1 ,

3 3
t t tt

e e e- - -å õå õ
æ öæ ö

ç ÷ç ÷
- - + > -  so 0.6832 0.0855>   

which is true. 

If 3 2,l=  then (3.4.3) becomes  

3 3

0 3 2
1 ,

3
t tt

e dt e dt- -å õ
æ ö
ç ÷
- >ñ ñ  then ( )

3
3

3 2
0

1
1 ,

3 3
t t tt

e e e- - -å õå õ
æ öæ ö

ç ÷ç ÷
- - + > -  so 0.6832 0.1733>  

which is true. 
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If 3,l=  then (3.4.3) becomes  

3 3

0 0
1 ,

3
t tt

e dt e dt- -å õ
æ ö
ç ÷
- >ñ ñ  then ( )

3
3

0
0

1
1 ,

3 3
t t tt

e e e- - -å õå õ
æ öæ ö

ç ÷ç ÷
- - + > -  so 0.6832 0.9502>  

which is a contradiction. The reason is because 3 3 2l= > .  

If 4,l=  then (3.4.3) becomes  

3 3

0 1
1 ,

3
t tt

e dt e dt- -

-

å õ
æ ö
ç ÷
- >ñ ñ  then ( )

3
3

1
0

1
1 ,

3 3
t t tt

e e e- - -

-

å õå õ
æ öæ ö

ç ÷ç ÷
- - + > -  so 0.6832 2.6684>  

which is a contradiction. The reason is because 4 3 2l= > . 

 

 
 

3.5  Applications for Special Means 

     In this section we study a new application of Steffensen's inequality for convex functions.  

 

     In [3], Agarwal and Dragomir proved the following theorem. They apply Hayashi's  

inequality (2.3.1) in their proof.  

Theorem 3.5.1 Let :f I Ì ­ be a differentiable function on I o and [ , ]a b IoË  with 

 

/ /

[ , ][ , ]

sup ( ) , inf ( )
x a bx a b

M f x m f x
ÍÍ

= <¤ = >-¤ and .M m>  If /f is integrable on [ , ]a b , then 

the following inequality holds 

( ) ( ) ( ) ( ) ( ) ( )1 ( ) ( )
( )

2 2( )( )

b

a

f b f a m b a M b a f b f af a f b
f x dx

b a M m b a

è øè øê úê ú- - - - - ++
- ¢

- - -ñ   

                                                          
( )( )

8

M m b a- -
¢ .                                                      (3.5.1) 

 

     The case of convex functions is embodied in the following corollary, which is very important 

in applications.   
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Corollary 3.5.1[3] Let :f I Ì ­ be a differentiable convex function on I oand 

[ , ]a b IoË  with 
/ /( ) ( )f b f a¸ . Then, the following inequality holds 

                  
( ) ( ) 1

0 ( )
2

b

a

f a f b
f x dx

b a

+
¢ -

- ñ
                      

     

/ /

/ /

( ) ( ) ( )( ) ( )( ) ( ) ( )

2( ( ) ( ))( )

f b f a f a b a f b b a f b f a

f b f a b a

è øè ø
ê úê ú- - - - - +

¢
- -

  

                       
/ /( ( ) ( ))( )

8

f b f a b a- -
¢                                                                                (3.5.2) 

Proof. The corollary follows from Theorem 3.5.1 and the observation that we can choose 

/ ( )m f a=  and 
/ ( )M f b= . 

 

     Now, we shall use the result of Corollary 3.5.1 to prove the following new application for the  

special means that introduced in chapter one, especially the arithmetic and logarithmic means. 

Application 3.5.1 Let 1p>  and 0 .a b¢ ¢Then, the following hold 

        1
1 ,

( )
0 ( , ) ( )

( )

b a
a p b p p a b

p

e e
A e e L e e

b a
-
-

-
¢ -

-
   

 

           

1

2( )( )b ab a e e
¢ ³

- -
   

                            

1 1
1 1

1
1

( ) , ( ) ( ) ( ) ,

,

( ) ( )

( )

b a p a b a p b p b a p a b
p p

p a b
p

e e L e e e b a e b a e e L e e

L e e

- -
- -

-
-

è øè ø
ê úê ú- - - - --

  

          
    

2
1
1 ,

( )( )
( )

8

b a
p a b
p

p b a e e
L e e-
-

- -
¢ .                                                                (3.5.3) 

Proof. By Corollary 3.5.1 applied to the convex function ,( ) 1p xf x e p= >, we have 

       0
2 ( )

a p b p b p a pe e e e

p b a

+ -
¢ -

-
   

           
( ) ( )

2 ( )( )

b p a p a p b p b p a p

b p a p

e e pe b a pe b a e e

p e e b a

è øè ø
ê úê ú- - - - +

¢
- -

-
 

           
( )( )

8

b p a pp e e b a- -
¢ .    
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Since  

             

11 1

1
1( ) ( , ) ( )

( )

ppb p a p
b a p a b b a b p a p

p b a

e e
p e e L e e p e e e e

p e e

--

-
-

å õè ø
æ öé ùæ öê úç ÷

-
- = - = -

-
 ,  

then 

       
( )

0
2 ( ) ( )

a p b p b a b p a p

b a

e e e e e e

b a p e e

+ - -
¢ -

- -
   

           

1 1
1 1

2 1
1

( ) , ( ) ( ) ( ) ,

2 ( )( ) ,

( ) ( )

( )

b a p a b a p b p b a p a b
p p

b a p a b
p

p e e L e e pe b a pe b a p e e L e e

p b a e e L e e

- -
- -

-
-

è øè ø
ê úê ú- - - - -

¢
- -

-
 

           
2

1
1 ,

( )( )
( )

8

b a
p a b
p

p b a e e
L e e-
-

- -
¢ .  

Thus (3.5.3) is valid. ƴ                                                                               
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CHAPTER 4 

Cerone's Generalizations of Steffensen's Inequality 
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4.1  Introduction 

     Cerone is one of the famous mathematicians who published a lot of papers in the field of 

inequalities in pure and applied mathematics. He is now a staff member of Victoria University  

in Australia.      

     In the present chapter we introduce several new interesting results on improvements of 

Steffensenôs integral inequality. Also we offer some new generalizations and extensions for 

Cerone's generalizations. Moreover, we introduce some new results of applications for integral 

mean. 

 

4.2  Extensions of Cerone's Results 

     In this section we introduce and discuss several new extensions of Cerone's generalizations of 

the classical Steffensenôs integral inequality. We give some new results in this matter. 

     The following lemma will be useful for the results that follow. 

Lemma 4.2.1[8]  Let  f, g :[ , ]a b ­  be integrable functions on [ , ].a b  Further, let 

[ , ] [ , ]c d a bÌ  with ( ) .
b

a
d c g t dtl= - =ñ  Then the following  identities hold. Namely,

 

( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
d b c d

c a a c
f t dt f t g t dt f d f t g t dt f t f d g t dt- = - + - -ñ ñ ñ ñ  

                                                             ( )( ) ( ) ( ) ,
b

d
f d f t g t dt+ -ñ                                   (4.2.1) 

and 

( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
b d c d

a c a c
f t g t dt f t dt f t f c g t dt f c f t g t dt- = - + - -ñ ñ ñ ñ    

                                                          ( )( ) ( ) ( ) .
b

d
f t f c g t dt+ -ñ                                 (4.2.2) 

Proof. Let  

                     ( , ; , ) ( ) ( ) ( ) , ,
d b

c a
S c d a b f t dt f t g t dt a c d b= - ¢ < ¢ñ ñ                 (4.2.3) 

then 

            ( , ; , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
d c d b

c a c d
S c d a b f t dt f t g t dt f t g t dt f t g t dtè ø+ +

é ùê ú
= -ñ ñ ñ ñ             
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( )1 ( ) ( ) ( ) ( ) ( ) ( )

d c b

c a d
g t f t dt f t g t dt f t g t dt= - - -ñ ñ ñ        

            ( )( ) ( )( )1 ( ) ( ) ( ) 1 ( )
d d

c c
f dg t f t f d dt g t dt= - - + -ñ ñ      

                     ( ) ( )( ) ( ) ( ) ( )
c c

a a
f df d f t g t dt g t dt+ - -ñ ñ      

                     ( ) ( )( ) ( ) ( ) ( )
b b

d d
f df d f t g t dt g t dt+ - -ñ ñ                            

( ) ( )( )( ) ( ) ( ) ( ) ( ) 1 ( )
c d

a c
f d f t g t dt f t f d g t dt= - + - -ñ ñ ( )( ) ( ) ( )

b

d
f d f t g t dt+ -ñ   

  
                   

.( ) ( ) ( ) ( ) ( )
d d c b

c c a d
f d dt f d g t dt g t dt g t dtè ø

é ùê ú
+ - + +ñ ñ ñ ñ   

Identity (4.2.1) is readily obtained on noting that 

  ( ) ( ) ( ) ( ) ( )
d d c b

c c a d
f d dt f d g t dt g t dt g t dtè ø

é ùê ú
- + +ñ ñ ñ ñ ( ) ( )

d b

c a
f d dt g t dt

è ø
é ù
ê ú

= -ñ ñ  
   

( ) ( ) ( ) 0.f d d c d cè øê ú= - - - =  

     Now, we will prove the identity (4.2.2) on realising that (4.2.2) is ( , ; , )S d c b aor, 

equivalently, ( , ; , )S c d a b-                      

( , ; , ) ( )( , ; , ) ( ) ( )
b d

a c
S c d a b tS d c b a f t g dt f t dt==- -ñ ñ                                          

  

                              
( ) ( ) ( ) ( ) ( ) ( ) ( )

c d b d

a c d c
f t g t dt f t g t dt f t g t dt f t dtè ø+ + -

é ùê ú
=ñ ñ ñ ñ 

       ( )( ) ( ) 1 ( ) ( ) ( ) ( )
c d b

a c d
f t g t dt g t f t dt f t g t dt= - - +ñ ñ ñ    

       ( ) ( )( ) ( ) ( ) ( )
c c

a a
f cf t f c g t dt g t dt= - +ñ ñ      

                ( )( ) ( )( )1 ( ) ( ) ( ) 1 ( )
d d

c c
f cg t f c f t dt g t dt+ - - - -ñ ñ      

                ( ) ( )( ) ( ) ( ) ( )
b b

d d
f cf t f c g t dt g t dt+ - +ñ ñ                             

( ) ( )( )( ) ( ) ( ) ( ) ( ) 1 ( )
c d

a c
f t f c g t dt f c f t g t dt= - + - -ñ ñ ( )( ) ( ) ( )

b

d
f t f c g t dt+ -ñ   

                    ( ) ( ) ( ) ( ) ( ) .
d c b d

c a d c
f c g t dt g t dt g t dt f c dtè ø

é ùê ú
+ + + -ñ ñ ñ ñ  

Identity (4.2.2) is readily obtained on noting that 
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                         ( ) ( ) ( ) ( ) ( )
d c b d

c a d c
f c g t dt g t dt g t dt f c dtè ø

é ùê ú
+ + -ñ ñ ñ ñ

 

                    

( ) ( )
b d

a c
f c g t dt dt

è ø
é ù
ê ú

= -ñ ñ  
  

                    
( ) ( ) ( ) 0.f c d c d cè øê ú= - - - = ƴ 

 

Theorem 4.2.1 [8]  Let  f, g :[ , ]a b ­  be integrable functions on [ , ]a b  and let  f  be 

nonincreasing. Further, let 0 ( ) 1g t¢ ¢and ( ) ,
b

i i
a

g t dt d cl= = -ñ  where
 
[ , ] [ , ]i ic d a bË     

for 1, 2i =  and 1 2d d¢ .   

(a) Then  

                         
1

1
1 1( ) ( ) ( ) ( , )

b d

a c
f t g t dt f t dt R c d¢ +ñ ñ                                         (4.2.4) 

     holds where,                                                                

                            ( )
1

1 1 1 ( ) .( , ) ( ) ( ) 0
c

a
tR c d f t f d g dt= - ²ñ                                     (4.2.5) 

(b) Then 

                         
2

2
2 2( ) ( , ) ( ) ( )

d b

c a
f t dt r c d f t g t dt- ¢ñ ñ                                         (4.2.6)       

     holds where,   

                            ( )
2

2 2 2 ( )( , ) ( ) ( ) 0.
b

d
tr c d f c f t g dt= - ²ñ                                     (4.2.7) 

Proof of part (a). Since  f  is nonincreasing on 1 1[ , ],c d for 1 ,t d¢ then 1( ) ( ),f t f d²  and  f   

is nonincreasing on 1[ , ],d b for 1 ,t d² then 1( ) ( )f t f d¢ . 

Also since 0 ( ) 1,g t¢ ¢ we get 0 ( ) 1g t²- ²-, and then 0 1 ( ) 1g t¢ - ¢.          

Now, from (4.2.1) and (4.2.3) of Lemma 4.2.1, we obtain 

( )
1

1 1 1( , ; , ) ( ) ( ) ( )
c

a
S c d a b f t f d g t dt+ -ñ   

                      ( )( ) ( )
1

1 1
1 1( ) ( ) 1 ( ) ( ) ( ) ( ) 0

d b

c d
f t f d g t dt f d f t g t dt= - - + - ²ñ ñ . 

Hence, from (4.2.3) 

                            ( )
1 1

1
1( ) ( ) ( ) ( ) ( ) ( ) 0

d c b

c a a
f t dt f t f d g t dt f t g t dt- - ²+ñ ñ ñ     
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and thus (4.2.4) is valid. The requirement that 1 1( , )R c d is nonnegative is clearly achieved since  

f  is nonincreasing and g is nonnegative. ƴ 

Proof of part (b). Since  f  is nonincreasing on 2[ , ],a c for 2 ,t c¢ then 2( ) ( ),f t f c²  and   f      

is nonincreasing on 2 2[ , ],c d for 2 ,t c² then 2( ) ( )cf t f¢ . 

Also since 0 ( ) 1g t¢ ¢, we get 0 ( ) 1g t²- ²-, and then 0 1 ( ) 1g t¢ - ¢.          

Now, from (4.2.2) and (4.2.3) of Lemma 4.2.1, we obtain 

( )
2

22 2( , ; , ) ( ) ( ) ( )
b

d
S c d a b f c f t g t dt- + -ñ   

                      ( ) ( )( )
2 2

2
2 2( ) ( ) ( ) ( ) ( ) 1 ( ) 0

c d

a c
f t f c g t dt f c f t g t dt= - + - - ²ñ ñ . 

Hence, from (4.2.3) 

                            ( )
2

2 2
2( ) ( ) ( ) ( ) ( ) ( ) 0

b d b

a c d
f t g t dt f t dt f c f t g t dtè ø-

é ùê ú
- ²-ñ ñ ñ     

giving (4.2.6). The requirement that 2 2( , )r c d   is nonnegative is clearly achieved since               

f  is nonincreasing and g is nonnegative. ƴ 

 

Remark 4.2.1  If in Theorem 4.2.1 we take 1c a=  and so 1d a l= +, then ( , ) 0R a a l+ =. 

Further, taking 2d b= so that 2c b l= -, gives ( , ) 0r b bl- = . The Steffensen's inequality 

(2.2.1) is thus recaptured. Since (2.2.2) holds, then
 2c a²  and 1d b¢  giving 

 
[ , ] [ , ].i ic d a bË  

Theorem 4.2.1 may thus be viewed as a generalization of the Steffensen's inequality as given in 

Theorem 2.2.1, to allow for two equal length subintervals that are not necessarily at the         

ends of [ , ]a b . 

 

Corollary 4.2.1[8]  Let the conditions of Theorem 4.2.1 hold.  

(a) Then  

                        
1

1 1( ) ( ) ( ) ( ) ( ).
b d

a a
f t g t dt f t dt c a f d- -¢ñ ñ                                         (4.2.8) 

(b) Then  

                       
2

2 2( ) ( ) ( ) ( ) ( ) .
b b

c a
f t dt b d f c f t g t dt- - ¢ñ ñ                                      (4.2.9) 

Proof of part (a). From Theorem 4.2.1 on using the fact that 0 ( ) 1g t¢ ¢, gives 
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( )

1

11 1 ( )0 ( , ) ( ) ( )
c

a
t dtR c d f t f d g¢ = -ñ   

                              ( )
1 1

1 11( ) ( ) ( ) ( ) ( )
c c

a a
dtf t f d f t dt c a f d¢ = - --ñ ñ   

and so 

1 1 1

1 1
11 1 1( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ).

b d d c

a c c a
f t g t dt f t dt R c d f t dt f t dt c a f d+ - -¢ + ¢ñ ñ ñ ñ    

giving the inequality (4.2.8). ƴ 

Proof of part (b). From Theorem 4.2.1 on using the fact that 0 ( ) 1g t¢ ¢, gives 

         
( )

2
2 2 2 ( )0 ( , ) ( ) ( )

b

d
t dtr c d f c f t g¢ = -ñ   

                              ( )
2 2

2 2 2( ) ( ) ( ) ( ) ( )
b b

d d
dtf c f t b d f c f t dt¢ - = - -ñ ñ   

and so  

2 2

2 2 2
2 2 2 2( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) .

b d d b

a c c d
f t g t dt f t dt r c d f t dt b d f c f t dt² - ² - - +ñ ñ ñ ñ    

Thus, inequality (4.2.9) is valid. ƴ  

 

Remark 4.2.2 If we take 1c a=  and so 1d a l= + and 2d b=  such that 2c b l= -then (4.2.8) 

and  (4.2.9) together again recaptures Steffensenôs inequality as given in Theorem 2.2.1.  

                                                                                                               

     The following theorem is another extension of Theorem 4.2.1 in case 1, 2, 3i =  and we think 

it is new. 

Theorem 4.2.2  Let  f, g :[ , ]a b ­  be integrable functions on [ , ]a b  and let  f  be       

negative and nonincreasing. Further, let 0 ( ) 1g t¢ ¢ and ( ) ,
b

i i
a

g t dt d cl= = -ñ where  

[ , ] [ , ]i ic d a bË  for 1, 2, 3i =  and 1 2 3d d d¢ ¢ .   

(a) Then  

                         
1 2

1 2
2 22 ( ) ( ) ( ) ( ) ( , )

b d d

a c c
f t g t dt f t dt f t dt R c d+¢ +ñ ñ ñ                  (4.2.10)            

     holds where,                                                                

            ( ) ( )
1 2

1 22 2 ( ) ( ) .( , ) ( ) ( ) ( ) ( ) 0
c c

a a
t tR c d f t f d g dt f t f d g dt+= - - ²ñ ñ        (4.2.11)              
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(b) Then 

                         
2 3

2 3
3 3( ) ( ) ( , ) 2 ( ) ( )

d d b

c c a
f t dt f t dt r c d f t g t dt-+ ¢ñ ñ ñ                   (4.2.12)                                       

     holds where,              
                     
( ) ( )

2 3
3 3 2 3( ) ( )( , ) ( ) ( ) ( ) ( ) 0.

b b

d d
t tr c d f c f t g dt f c f t g dt+= - - ²ñ ñ           (4.2.13)                      

 

Proof of part (a). Since  f  is nonincreasing on 1 1[ , ],c d  for 1 ,t d¢ then 1( ) ( ),f t f d² and  f  is       

nonincreasing on 2 2[ , ],c d for 2 ,t d¢ then 2( ) ( ).f t f d²  Similarly, f  is nonincreasing on 1[ , ],d b  

for 1 ,t d² then 1( ) ( ),f t f d¢ and  f  is nonincreasing on 2[ , ],d b for 2 ,t d² then  2( ) ( ).f t f d¢  

Also since 0 ( ) 1g t¢ ¢, we get 0 ( ) 1g t²- ²-, and then 0 1 ( ) 1g t¢ - ¢.          

Now, from (4.2.1) and (4.2.3) of Lemma 4.2.1, we obtain 

( ) ( )
1 2

1 1 2 2 1 2( , ; , ) ( , ; , ) ( ) ( ) ( ) ( ) ( ) ( )
c c

a a
S c d a b S c d a b f t f d g t dt f t f d g t dt+ + - + -ñ ñ  

  
( )( ) ( )

1

1 1
1 1( ) ( ) 1 ( ) ( ) ( ) ( )

d b

c d
f t f d g t dt f d f t g t dt= - - + -ñ ñ  

    
   

( )( ) ( )
2

2 2
2 2( ) ( ) 1 ( ) ( ) ( ) ( ) 0

d b

c d
f t f d g t dt f d f t g t dt+ - - + - ²ñ ñ .  

Hence, from (4.2.3) 

   
1 2

1 2

( ) ( ) ( ) ( ) ( ) ( )
d b d b

c a c a
f t dt f t g t dt f t dt f t g t dt+- -ñ ñ ñ ñ   

                                   ( ) ( )
1 2

1 2( ) ( ) ( ) ( ) ( ) ( ) 0
c c

a a
f t f d g t dt f t f d g t dt- - ²+ +ñ ñ       

and thus (4.2.10) is valid. The requirement that 2 2( , )R c d is nonnegative is clearly achieved 

since  f  is nonincreasing and g is nonnegative. ƴ 

Proof of part (b). Since  f  is nonincreasing on 2[ , ],a c for 2 ,t c¢ then 2( ) ( ),f t f c² and  f  is  

nonincreasing on 3[ , ],a c for 3 ,t c¢ then 3( ) ( ).f t f c²  Similarly,  f  is nonincreasing on2 2[ , ],c d  

for 2 ,t c² then 2( ) ( ),cf t f¢ and  f  is nonincreasing on 3 3[ , ],c d for 3 ,t c² then 3( ) ( ).cf t f¢
 

Also since 0 ( ) 1g t¢ ¢, we get 0 ( ) 1g t²- ²-, and then 0 1 ( ) 1g t¢ - ¢.          

Now, from (4.2.2) and (4.2.3) of Lemma 4.2.1, we obtain 

( ) ( )
2 3

2 32 2 3 3( , ; , ) ( , ; , ) ( ) ( ) ( ) ( ) ( ) ( )
b b

d d
S c d a b S c d a b f c f t g t dt f c f t g t dt- - + - + -ñ ñ   
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( ) ( )( )

2 2

2
2 2( ) ( ) ( ) ( ) ( ) 1 ( )

c d

a c
f t f c g t dt f c f t g t dt= - + - -ñ ñ

 

       
( ) ( )( )

3 3

3
3 3( ) ( ) ( ) ( ) ( ) 1 ( ) 0

c d

a c
f t f c g t dt f c f t g t dt+ - + - - ²ñ ñ . 

Hence, from (4.2.3) 

   
2 3

2 3

( ) ( ) ( ) ( ) ( ) ( )
b d b d

a c a c
f t g t dt f t dt f t g t dt f t dt- -+ñ ñ ñ ñ   

                                   ( ) ( )
2 3

2 3( ) ( ) ( ) ( ) ( ) ( ) 0
b b

d d
f c f t g t dt f c f t g t dt- - ²+ +ñ ñ     

giving (4.2.12). The requirement that 3 3( , )r c d   is nonnegative is clearly achieved since               

f  is nonincreasing and g is nonnegative. ƴ 

 

     The following lemma will be used for recapturing the classical Steffensen's inequality (2.2.1). 

Lemma 4.2.2  Let  f, g :[ , ]a b ­  be integrable functions on [ , ]a b and let  f  be negative and 

nonincreasing. Further, let 0 ( ) 1g t¢ ¢  and .( )
b

a
g t dtl=ñ Then 

                   ( ) .( ) ( ) ( ) ( ) ( )
b b a

b a a
f t dt f t f b g t dt f t dt

l l

l

- +

-
¢+ -ñ ñ ñ                     (4.2.14) 

Proof. 

                ( )( ) ( ) ( ) ( )
b b

b a
f t dt f t f b g t dt

l

l

-

-
+ -ñ ñ                                

               ( )( ) ( ) ( )
b b

b a
f t dt f t f b dt

l

l

-

-
¢ + -ñ ñ                                                  

               ( ) ( ) ( )
b b b

b a a
f t dt f t dt f b dt

l l

l

- -

-
= -+ñ ñ ñ                               

               ( ) ( )( )
b

a
f t dt f b b al= - - -ñ                                

               ( ) ( )( )
b

a
f t dt f b a bl= + + -ñ                                

               ( ) ( )( )
b

a
f t dt f b b b¢ + -ñ             (where  a a bl¢ + ¢)  

               ( )
b

a
f t dt=ñ                                

               ,( )
a

a
f t dt

l+

¢ñ    

where a a bl¢ + ¢and  f  is negative and nonincreasing. ƴ 
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Remark 4.2.3  If we let 1c a=  in Theorem 4.2.2, then we have 1d a l= +. Further,           

taking 2 3d d b= = gives us 2 3c c b l= = -. Hence (4.2.10) and (4.2.12) together becomes     

( ) ( ) 2 ( ) ( )
b b b

b b a
f t dt f t dt f t g t dt

l l- -
+ ¢ñ ñ ñ                 

                                        
( ) .( ) ( ) ( ) ( ) ( )

a b b

a b a
f t dt f t dt f t f b g t dt

l l

l

+ -

-
+¢ + -ñ ñ ñ  

Using Lemma 4.2.2, we obtain  

         .( ) ( ) 2 ( ) ( ) ( ) ( )
b b b a a

b b a a a
f t dt f t dt f t g t dt f t dt f t dt

l l

l l

+ +

- -
+ ¢ ¢ +ñ ñ ñ ñ ñ              

The classical Steffensen's inequality (2.2.1) is thus recaptured. 

 

Corollary 4.2.2  Let the conditions of Theorem 4.2.2 hold.  

(a) Then  

    

1 2

1 1 2 22 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
b d d

a a a
f t g t dt f t dt f t dt c a f d c a f d- -¢ + - -ñ ñ ñ        (4.2.15)                    

(b) Then  

    2 3
2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) .

b b b

c c a
f t dt f t dt b d f c b d f c f t g t dt+ - - - - ¢ñ ñ ñ         (4.2.16)                           

Proof of part (a). From Theorem 4.2.2 and using 0 ( ) 1g t¢ ¢, we obtain 

         
( ) ( )

1 2

2 2 1 20 ( , ) ( ) ( ) ( ) ( ) ( ) ( )
c c

a a
R c d f t f d g t dt f t f d g t dt¢ = - + -ñ ñ   

                              ( ) ( )
1 2

1 2( ) ( ) ( ) ( )
c c

a a
f t f d dt f t f d dt¢ - + -ñ ñ   

                              
1 2

1 1 2 2( ) ( ) ( ) ( ) ( ) ( )
c c

a a
f t dt c a f d f t dt c a f d- - -= - +ñ ñ   

and so 

1 2

1 2
2 22 ( ) ( ) ( ) ( ) ( , )

b d d

a c c
f t g t dt f t dt f t dt R c d¢ + +ñ ñ ñ    

                       
 

1 2 1

1 2
1 1( ) ( ) ( ) ( ) ( )

d d c

c c a
f t dt f t dt f t dt c a f d-¢ + + -ñ ñ ñ  

                                   
2

2 2( ) ( ) ( ),
c

a
f t dt c a f d-+ -ñ   

which implies the inequality (4.2.15). ƴ 
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Proof of part (b). From Theorem 4.2.2 and using 0 ( ) 1g t¢ ¢, we obtain 

         
( ) ( )

2 3
3 3 2 30 ( , ) ( ) ( ) ( ) ( ) ( ) ( )

b b

d d
r c d f c f t g t dt f c f t g t dt¢ = - + -ñ ñ   

                            ( ) ( )
2 3

2 3( ) ( ) ( ) ( )
b b

d d
f c f t dt f c f t dt¢ - + -ñ ñ   

                            
2 3

2 2 3 3( ) ( ) ( ) ( ) ( ) ( )
b b

d d
b d f c f t dt b d f c f t dt= - - + - -ñ ñ   

and so  

2 3

2 3
3 32 ( ) ( ) ( ) ( ) ( , )

b d d

a c c
f t g t dt f t dt f t dt r c d² + -ñ ñ ñ   

                         
2 3

2 3 2
2 2( ) ( ) ( ) ( ) ( )

d d b

c c d
f t dt f t dt b d f c f t dt² + - - +ñ ñ ñ                           

                                   
3

3 3( ) ( ) ( ) .
b

d
b d f c f t dt- - +ñ   

Thus, the inequality (4.2.16) is valid. ƴ 

 

     The following lemma will be used in recapturing the classical Steffensen's inequality (2.2.1). 

Lemma 4.2.3  Let  f, g :[ , ]a b ­  be integrable functions on [ , ]a b  and let  f  be negative and 

nonincreasing. Further, let 0 ( ) 1g t¢ ¢  and .( )
b

a
g t dtl=ñ Then 

                               ( ) ( ) ( ) 0.
b

a
f t dt b a f b

l
l

+
- - - ¢ñ                                            (4.2.17) 

Proof.  

                 ( ) ( ) ( )
b

a
f t dt b a f b

l
l

+
- - -ñ                                

                 ( ) ( ( ))
b

a
f t dt a b f b

l
l

+
= + + -ñ                                

                 ( ) ( ( ))
b

a
f t dt b b f b

l+
¢ + -ñ           (where  a a bl¢ + ¢)  

                 ( ) 0,
b

a
f t dt

l+
= ¢ñ                                                                                                 

where a a bl¢ + ¢and  f  be negative and nonincreasing. ƴ 

 

Remark 4.2.4 If we let 1c a=  in Corollary 4.2.2, then we have 1d a l= +. Further, taking 

2 3d d b= =gives us 2 3c c b l= = -. Then (4.2.15) and (4.2.16) together becomes    
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  ( ) ( ) 2 ( ) ( )
b b b

b b a
f t dt f t dt f t g t dt

l l- -
+ ¢ñ ñ ñ                 

                                           
( ) ( ) ( ) ( ).

a b

a a
f t dt f t dt b a f b

l

l
+

+¢ - - -ñ ñ  

Hence   

       2 ( ) 2 ( ) ( )
b b

b a
f t dt f t g t dt

l-
¢ñ ñ                 

                                               
2 ( ) ( ) ( ) ( )

a b

a a
f t dt f t dt b a f b

l

l
l

+

+
+¢ - - -ñ ñ . 

Upon using Lemma 4.2.3, we obtain  

                        2 ( ) 2 ( ) ( ) 2 ( )
b b a

b a a
f t dt f t g t dt f t dt

l

l

+

-
¢ ¢ñ ñ ñ .                

The classical Steffensen's inequality (2.2.1) is thus recaptured. 

 

     The following theorem is an extension to Theorem 4.2.2  for the case 1, 2, . . . ,i n=  and we 

believe that it is a new result. 

Theorem 4.2.3  Let  f, g :[ , ]a b ­  be integrable functions on [ , ]a b  and let  f  be negative 

and nonincreasing. Further, let 0 ( ) 1g t¢ ¢ and ( ) ,
b

i i
a

g t dt d cl= = -ñ where [ , ] [ , ]i ic d a bË  

for 1, 2, . . . ,i n=  and 1 2 . . . nd d d¢ ¢ ¢,  2, 3, 4, . . .n=   .  

(a) Then                   

                 

1 2 1

1 2 1

( 1) ( ) ( ) ( ) ( ) . . . ( )
n

n

b d d d

a c c c
n f t g t dt f t dt f t dt f t dt

-

-

- ¢ + + +ñ ñ ñ ñ   

                                                            
 1 1( , )n nR c d- -+                                             (4.2.18)            

 

     holds where,                                                                

            
 

( ) ( )
1 2

1 1 1 2( ) ( )( , ) ( ) ( ) ( ) ( ) . . .
c c

n n
a a

t tR c d f t f d g dt f t f d g dt- - += - - +ñ ñ +  

                                           ( )
1

1 ( ) .( ) ( ) 0
nc

n
a

tf t f d g dt
-

-+ - ²ñ                              (4.2.19)              

(b) Then 

              
   

2 3 1

2 3 1

( ) ( ) . . . ( ) ( ) ( , )
nn

nn

d d d d

n n
c c c c

f t dt f t dt f t dt f t dt r c d
-

-

-+ + + +ñ ñ ñ ñ   

                                                          ( 1) ( ) ( )
b

a
n f t g t dt¢ -ñ                                  (4.2.20)                                       

     holds where,   

            ( ) ( )
2 3

2 3( ) ( )( , ) ( ) ( ) ( ) ( ) . . .
b b

n n
d d

t tr c d f c f t g dt f c f t g dt+= - - +ñ ñ +  

                 ( ) ( )
1

1 ( ) ( )( ) ( ) ( ) ( ) 0.
nn

b b

nn
d d

t tf c f t g dt f c f t g dt
-

-+ - + - ²ñ ñ              (4.2.21)                       


