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ABSTRACT

In this thesis we introduce some main results from the theompow¥ex functionsand
Jensends and r el ave prdsent andetqileca dtumjt an éngportantAtype of
inequalities callebteffensen’'dnequality .

The aimof the this thesis i$o provide a systematic study of some but important integral
inequalities with a focus ofteffensen'stype, which find numerous applications specid
functions, special meansnd other fields imathematics

Steffensen's inequalitydeak with the comparison between integrals ovewfzle interval
[, b] and integrals over a subinterval fd, b]. Many mathematicianspresented scientific

papers in this field, for examplBlercer, Pecaric Hayashi, Wu, Srivastava and Cerone

We study some generalizations belong to these sciertigtsye give good contributieras
applications forspecial functions special meansand integral mean and wealso study new

generalizations obteffensen'snequality.

We focus onthe concept of convex setandconvex andconcavefunctions Also we offer
sone basic inequalities associateih convex functions.

We study Jenserand Jensefteffenseninequalities and offer some generalization of
Steffensen's inequalityWWe focus on the work of Pecaric and V@uivastava and give somew
genealizations. Also we offer some new extensions for Cerone's generalizatidrish

wereobtainedby usingthe ideas of Pecaric

Vi
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Introduction

Mathematical analysis is that branch of mathematics which includes the theory of

differentiation, integration, measure, limits, and convex functions.

Convex functios, is fundamental as positive funct®ar increasing functiomand became an

important point in the search field of the study of mathematical analysis

Inequalities arat the heart oimathematicahnalysisand it has become an important tool in
mathematical analysisinti we became we look at it as stamldne branch of modern
mathematics since the beginning of thé"2@ntury. The book "Inequalitieg9] by Hardy,
Littlewood and Pélya was the pioneering work, and other books (see 3,d1fl) have a great

value in this arealVe focus our att&ion on thdantegral inequalitieef Steffensen's type.

By the beginning of the1™ century the field ofmathematical inequalities has continued to
develop rapidly.lnequalities are one of the most important instruments in many branches of
mathematic such asirfictional analysis, theory of differential and integral equations, probability

theory, etc. They are also useful in mechanics, physics and other sciences.

Steffensen's inequality was established 918 (seed6]), andit lies in the coreof integral
inequalities, which can be used figalingwith the comparison between integrals ovevtele

interval [a, b] and integrals over a subinterval |& b] . Mathematicians likeMercer, Pecaric,

Hayashi, Wu, Srivastava@nd Cerondéavepresentesnanypapers in this field.

Johan Frederik Steffensen187311961) was danishmathematiciarandstatistician He
was a professor of science at the University of Copenhagen from 1923 to H84%s many

valuable scientific publication&teffensen's inequalityas named after him.

In this thesis, wepresent new extensions and generalizatifors Steffensen’s inequality
together with somealuable applications related to special meapsgciafunctions and integral

mean.


https://en.wikipedia.org/wiki/Danish_people
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Statistician
https://en.wikipedia.org/wiki/Steffensen%27s_inequality

The aim of the this thesis t® provide a systematic study tife convex functions andst
relation with some but important integral inequalitiesamely, Steffenen’'s type, which find

numerous applications somefields of mathematics

In chapter one, we introduce some importa@aind essential facts, definitions and theories
which are needed to understand the material of this thesis. This chapter aims timobaugh
introduction to contemporary convex function thedye study the concept of a convex,sand
convex andconcavefunctionswith some popertiesand examples.

Also we offer some basic inequalities associatét convex functions. We studienserand
JenserSteffenseninequalities Moreover we offer some famous special medode usal in
applications.Jensen's inequalitis one of the most important inequalities in mathemati¢s.

present two forms afensen's inequalityhediscreteform (1.6.1) andheintegralform (1.6.4)

In chapter two, we focus on Steffensen's inequalitand offer some generalization of
Steffensen’'s inequality. Moreover, we study Mercer's ieseljardingSteffensen’s inequality
and the relation between eéffensen’'s and Jensen's inequalities. At the end, we give new
applications fospecial functionselated to theesultsof this chapter.

In the Theorem 2.2.1 we introduce the original form of Steffensen’s inecamaditgive some
remarks and examplése show how we can use and apply the inequality in Theorem. 2.1
(2.3.1)Hayashi gave a generalization of Steffensen's inequalyit's applications. In Theorem
2.4.1 Mercer gave another generalization of Steffensen's inequality, bljtZn[du claims that
there is anmor in Mercer's result (2.4.1)Theorems 2.4.2, 2.4.3, and 2.4.4 are provided so as to
correct the above mentioned error and to give some extensions of Steffensen's inequality.

In Theorems 2.5.2 and 2.5.3 we focus on thatiaiship between Steffensen's and Jensen's
inequalities through the definition of convex function. Finally, we give a new applicdtons
Special Functionsrelated to generalizations of Steffensen's inequatitg importance of
inequality @.6.95 is in the comparison between the two famous types of special functions in
mathematics using the Steffensen's inequality.

Xl



In chapter three, we introduceseveral interesting results a@eneralizations f Steffens
integral inequality.We focus on the workfoPecaric and WilSrivastava and give sonrew
generalizations. Moreover, we study weaker condition for this generalizations. At theeend, w
give new applications fospecial means.

In Theorems3.2.1 and3.2.2 Pecaric gave another generalization o 6tf ensendés i n
whichis very important in our studyheorens 3.3.1, 3.3.2 and 3.3@ovidesgeneralizatioato
the classical Steffensentgequality.Using Theorem 3.3,2Pecari¢ et alobtaired sharpened and
generalized versions of Theorems 3.@ntl 3.2.2. This versions are given in corollaBes5 and
3.3.6

In Theorems 3.1 and 34.2 we study weaker conditions for the parameterin Pecaric's
generalizationsln corollaries3.4.1 and 3.4.2 we obtain weaker ditions for the parametef
i n St eff en swegi¥essomerexammdadxplainyhe results introduced Tieorems
3.4.1 andl 3.4.2 Application 3.5.1is a new gplication for the special means the case of

convex functims.

In chapter four, we introduces e ver al new interesting results
integral inequality Also we offer some new extensions for Cerone's generalizatibich were
obtained usinghe ideas oPecaric 23]. We alsogive a newapplications for integral mean.

In Theorem4.2.1, Ceronegave another general i zawhichaosh o f
very important inthis chapter. Theorem4.2.2is another extensionf Theorem 4.2.1n case
I =1, 2, 3and we think it is newWe useLemmad.2.2for recapturing the classical Steffensen's
inequality (2.2.1) Theorem4.2.3is an extension to Theorem 4.2.2 for ttesei =1, 2,...,n
and we believe that it is a new result

To generalizZ2Cer one6s r es ulffkwe oeed lemma.3.1f Theorer 4.3l
moregeneralizatioo f Ce r o n e thesfunctiend (k|, andafs@im this theorerwe obtain
a Mer cer 60s (DheoremR.42nd 2.43) usingfemarks 4.3.1

The results in theorem 4.3.2 aextensios to those inTheorem 4.3.for i =1, 2, 3, and
they are newesults Theoren4.3.3 is anextension to Theorem 4.3t@ thecasei =1, 2,... ,n
and it gives more new results to this subject, drmborem 4.2.3is a consequence of
Theorem 4.3.3y takingh(t) = k(t) 4. Finally, In section 4.4ye apply the integral mean on

the extensions of Ceronefgeneralizations ofhe classicaSt ef f ensends Bt egr

Xl



some new resultare obtainedIn Theorems4.4.1 Ceronegave another generalization of
St ef f en s e n osig the nneegral anéarwhigh is very important inthis section.In

Theorem4.4.2 we extend he results inTheorem 4.4.%o the casei =1, 2, 3. Theorem4.4.3

provides a nevextension to Theorem 4.4t@ thecasei =1,2,...n

Xl



CHAPTER 1

Preliminaries andConcepts & Convexity



1.1 Preliminaries
Definition 1.1.1 (Lipschitz Condition) [24, p.4]

A function f :E - R" is said to satisfy &ipschitz condition on E if there isa positive

constant such that for alx ,y i E
[ (x)-f(y) eLlx ¥

where|x| denotes the norim R" and E is an open subset aR" . The constant is called the

Lipschitz constant.

Definition 1.1.2 (Absolutely Continuous)[25, p.104

A function f :[a b]- R is said to beabsolutely continuouson [a, b] if givene>0,
n
|

$d > 0 such that if{(xi Y )} is a finite pairwisedisjoint family of subintervals ofa, b]
i=1

with'ar']_ |y; - %] < d, then na‘f(yl) £ ()] < ¢
i=1 iz

Definition 1.1.3 [24, p.Z

We say thatthe functionf :I - R is affine if it is of the form f (x)=mx +bon I,

m, bare constant.

Definition 1.1.4[13, p.§

Let f be a realalued function defined on an intervdlE R. A function f is called

nondecreasingon| if for each pair of different pointxl,xzi |, thecondition

(%, - xz)( f(x) -f (xz)) 2]

is valid, andincreasingif the following strict inequality

(x, - xz)( f(x) -f (xz)) >0

holds.



Definition 1.1.5[13, p.§

Let f be a reavalued function defined on an intervdlE R. A function f is called

nonincreasing on | if for each pair of different pointsX;,X,l |, the condition
(- xz)( f(x,) -f (xz)) ©

is valid, anddecreasingif the following strict inequality
(x;- %,)( f(x) -F(x,))<0

holds.

Remark 1.1.4 (Monotone Function) [B, p.§|

A function f is called amonotone function if it is either a nondecreasing (increasing) or

a nonincreasing (decreasing) function.

Now, we offer some famous special mgars B])

For a, b> 0 we recall the means

Ala, = 2 42- b arithmetic mean,
G(a, h=y{ a geometric mean,
2a b :
H(a, 9= : harmonic mean,
@ h=——,

L(a, O:g, logarithmic mean(a , 9,

Inb-1In a ’

A p+l _ 1 ¥
L,(a, 0:2 b l 5 generalized lognean(a, f,p , 10

&p+Db -3 g’



1.2 Convex Sets

The concept of a convex set is a simple one. A set in space is convex if whenever it contains
two points, it also contains the line segment joining them. See Figl.1. In Figl.1 (a), the set is
convex, because the line segment joining every pair of poititg set lies entirely in the set
In Figl.1 (b), the set is not convex, because the line segment joining thexemalyg does not
lie entirely in the set. In Figl.1 (ADBFE & ACBDare convex, butACBFE is not convex.

D

(2) (b) ©)

Figl.1

For each point on the line through distinct pointsandy of R", there exists a unique
scalar/ such that

a=y ¥(x y) A& (1+)/y

P.I:x—}')

Sr XY
e Y

Figl 2

See Figl.2 Conversely, each poimtof this form lies on the line throlagk andy. This the

line throughx and vy is the se{/ X +(1 - /)y: /R which can also be written in the

symmetrical form{/x+ y1 /+ 1a



We note that the subset
{/x+@L -)y:0 ¢/B¢{ %/ ysm, [0,m* L

of the line throughx andy is the line segmeroining x and y. A fact which will be needed
whenwe define a convex sgt7, pp.45].

Definition 1.2.1
AsetS in R" is said to be convex if for each, y [ S, the line segment x +(l - Oy,

"/ 1[0,1], belongs toS. See Figl.3. Ifm=1 - /, then the line segment becomes
/ X+ mp suchthat /+ /&

= =2
Ax +[1— f)}' X
Figl.3

Remark 1.2.1 [Z, p.5]]

If x,yl R and/ 1 [0,1], then/ x +(1 - Oy is said to be aonvex combination

Example 1.2.1 Consider the interval[a, b] E R. We show that this intervas a convexset.

Let x, yl [a b] be twoarbitrary elements. We need to prove tiat +(1 - )y [ia b]
"/ 1[0,1]. Select an arbitrary/ in[0,1]. Since x,yl [a b], then X,y ¢b. Since

/110,1], it followsthat / x +(1 - )y I8 andsimilarly / x +(1 - )y &. Since/ , X and

y were arbitrarily chosen, thehx +(1 - Jy flab] Xy [&4 B and /[0,1]. vy



Properties of Convex Sets [2 pp.50-51]

Let S, Sand S be convex sets belongs B. Then, the following sets are also convex:
i- The intersectionS, &£S,.

ii- The sumS,; + S,.

ii- Thetranslated s+ g al R.

iv-  The scaled seS,t1 R.

Remark 1.2.2 The union of convex sets is not necessarily convex. To show that let us give an
example. Consider the line segmeitsand B in the Euclidean 3pace wheréA with the
endpoints (0, 0)and (2, 2), and B with the endpoints(2, 2)and (4, 0) Both A and B are
convex. Also (I,1)and(3,1) ACB, but only the endpoints of the line segment

(1, Dand (3, L are in the union, while the pointe in betwe@nl)and (3,1 are notin the

uni on, so that the union is not convex. Y
1.3 Convex and Concave Functions

Definition 1.3.1 (OneVariable Convex Functions) [T7, p.]]

(@) Let | beanclosedintervalin R. Thenf :1 - R issaidto beconvexif for all
x,yl landall/ I [0,1],
f (/ X+ -5 y) ¢ f(x) (Jj- )f/(y) (1.3.1)

holds.If (1.3.1)s strict forall x , y and/ | (0, 1),thenf is said to be strictly
convex.

(b) If theinequalityin (1.3.1)isreversedthenf issaidto beconcavelf it is strictfor all
x , y and/ | (0,2), thenf issaidtobestrictlyconcaveThatis,f is concave if

-f is convex.

The geometrical meaning of convexity15, p.7]

The convexity of a functiof :1 - R means geometrically that the points of the graph of

f are under (or on) the chord joining the endpo(msf (X)) and(y, f(y)), for all

X, Yyl |, X <y. (i.e. The simple geometric interpretation of (1)3s that the graph off

lies below its chords)



u
(v./ (»))
5 (.}’} - ‘::R
A (x)+(1-2)f () : } S
, x f
7 (x) e
f (2 +1-A)y) sl
S 0
> X
x z=Ax+(1-A)y ¥
Figl.4: Convex Function
It is clear from Figl.4 that SlopePQ ¢ Slopd’R ¢ Slop@®F (1.3.2)
Theorem 1.3.1[Z, p.194 Let f :1 - R be a convex function and let,y,zl | satisfy

X <z <y.Then

f@-f0 ¢ T -0 ¢ f(D (2

zZ- X y -X y Z

Proof. We expresg as a convex combination &andy as follows

z=Y 2y 2 Xy tis true, since’ 2 4% X 1-:
y-X y X ¢ y X 'y x
By the convexity off , f (z) ¢§;-—)Z(f (x) +2 "Xy (y).

Then (y - x) f(z) Ay 2) f(x) (2 X-f(y)

Now, (y-x)gf(z) f(x) g& x f(z) (y-x)f(x)
¢ly 2)f(x) (@ % f(y) (y- % #x)
=@z x)f(y) b y-z+y # ftx)
=(z x) f(y) €z » f(x)
=(z x)[f(y) #(X]



thus £ @00 ¢ T -F09

Z- X y -X
similarty )= T (X) ¢ 1) 1(2)
y - X y -z

Example 1.3.1Let f :R- R defined byf (x)=x2. Thenf (x) is convex. To show that,

we can use (1.3.1) directly:

Let 1- / = nthen (1.3.1) becomes
f(/x+ m) ¢ f(x) +frry) suchthat , / OImwith #1.
We need to show f (x)+ b (y) -f( k + yp O

Now /f(x)+ rb(y) -f( k +y}

I x2 +my? (% wp

/ X% +ny? ( Ix? 2+ Kym 2+y3)

/| x? - Fx? +§°F 2g* 2- %y

X2/@L-) 2 @ ym2- Ay

=/ m* + /ym 2 Ay

/ /éx2 2X Y yz)

=/ fx —y)2 8.
Thusf (x)=x?i s a convex function. VY
Remark 1.3.1[77, p.1] For x, yi |, p,q 20, p 4 Osthen (1.3.1) is equivalent to
¢ 4px+ay g pf (x)+af(y) (1.3.3)
¢ Pta = P q

where / = P ,l-/:q—
p+q p



If p=q 4, then (1.3.3) becomes

f

x+y gf(x)+f (y)
5 @ 5 (1.3.4)

vO?B Qo

Definition 1.3.2 [17, p.§ A function f :[a, b]- R is called convex ithe Jensen sense, or
J-convex, or mieconvex, on[a, b] if for all points X,y [a b] the inequality (1.3.4) holds.
A J-convex functionf is said to be strictly-convex if for all pairs of poir$t(x , y), X, VY,

strict inequality holds (1.3.4).

Remark 1.3.2[T7, p.6] J. L. W. V. Jensen (1905, 1906) was the first to define convex functions

using inequality (1.3.4) and to draw attention to their importance.

Definition 1.3.3 [17, p.7] A function f :I - R, | an interval in R, is said to be
log-convex, or multiplicatively convex if log is convex, or equivalently if for alk, y I |

and all /1 [0, 1]

f(/x+@-)y) e(x) f(y)’ (1.3.5)

It is said to be logoncave if the inequality (1.3.5) is reversed.

Theorem 1.3.2 P4, p.1gd Let f :I- Randg J- R where rangef ) J If
f andg are convex functions ang is increasing, then the composite functigrof is

convex onl .

Proof. For X, yI | and / 1[0, 1]
g &f (/x+(1-)y) g @g 10 (¥ )9(y)
¢ /9gf (x) gfL g fey)
=/(g &) 1 -Ng fpy



Remark 1.3.3[T7, p.7] Since f (x) =exp[logf (x)], it follows from Theorem1.3.2 that
a logconvex function is convex (b not conversely). In generag) (x) e s log-convex
if f(x)is convex function. Since gx)=e ) then logg(x)=loge ) =f (x).Thus
logg (x)is convex For examplef (x) =x? which is convex function withg (x) =¢ (X), then

2 .
g(x)=€* islogconvex.

Theorem 1.3.3[B, p.1§ A function f :[a, b]- R is convex on [a, b] if and only if

for any threepoints X;,X,,Xs (%, < X, < X3 from [@ § the following inequality holds

X, f(x,)
X, f(x) 4=(x;5 -x;) F(x) (% %) f(x) (% x-f{ 9 0 2 (1.3.6

X3 f ()

Proof. Puttingin (1.3.1)x =X, /X {1 )y X Y X, we have

X3- X,

f(x,) ¢/ f(x) 4 -)f(xs) withtaking/ =222 and1- / 22771 after

X3~ %Xy X3~ %Xy

rearranging, we get (1.3.6)

Conversely, putting in (1.3.6) =x;, /x {1 -)y X5 Yy X withthe conditionx <y,

we get
(y-7x £/39y)f(x) (x 9-f( & (@ 98 ( x42 ) y/ ¥ (y-0
(y-x)/ f(x) x y)f(/x (@ )n) ( Ay +y/3 (¥ O
(y-x)F(/x 41 Ay) (9 9- A9 ( 93 (¥ (Y
F(/x+@-)y) ¢f(x) (¥ )4(y)whichis(3.1).

If x> y, then puttingy = x,, / x €1 ) y %, X %5 we ge

(- /x £79y) () (¥ 91 k(@ 94 ( <L )9/} (K0

10



(x-/x + y)f(y) (¥ x)f( K (1 +))9 (x ¥ % O
(x-y)f(/x 4L Ay) (& y)- (N ( t*x-y (x yp (¥

f(/x+(1-)y) ¢f(x) (¥ )¥(y)which is (1.3.1). vy

Remarks 1.3.4[7, p.2

(@) (1.3.6) is equivalent to

f () 62222 1 (x,) #2211 (x)

X3= Xy X3 =X

—X3 —X2 Xl
where/ =22 "2 andl- / suchthat/ +(1 - ) Zand/x,+(1 - )x; =%,

X - xl X5 X,

(b) From (1.3.6) divide by(X, - X,)(X, -X3)( X, Xy), we obtain

f(xy) N f (x,) LT (x3)
(- %) (X -%g) (X2 X)(% %) (% xH{ % X-

(©) f isboth convex and concave if and onlfi{x ) =ax -+ for some ac R.

1.4 Some Properties of Convex Functions

Remark 1.4.1p4, p.3] A function convex and finite on a closed interjal) b] is bounded from

above byM =max{ f (a),f (b)} since foranyz =/ a {1 -) b in the interval,
f(z)e/f(a) 41 -)f(b) oM (1+)M M. (1.4.1)

The function f is also bounded from below as we see by writing an arbit@int p the form

aa+b gt Then by (1.3.4) withx = geaTb 8{ andy =a—%b t,Efor some real numbédy
g -

1:é\a+b gtlz aa4b g}f azl?e ]
- - ¢

11



a+b aab g a ki
¢ 2 + 2

UsingM as the upper bound

So f gﬂ Oapf 230 B p (1.4.2)
9 —_— -_—
From (1.4.1) and (1.4.2),wesaytfat s bounded. Y
Theorem 1.4.1P4,p.4 If f :1 - R isconvex, therf satisfiesa Lipschitz conditioron any

closed interval[a, b] contained in the interiod ° of | . Consequently,f is absolutely

continuous ofg, b] and coninuous onl °.

Proof. Choosee>0 so thata- € andb - belong tol, and letmandM be the lower and

upper bounds fof on[a- ¢ b +fIf x andy are distinct points ofa, b] ,set

X),/ J_y-X|

ety X

-I-L(y

SR

thenzi[a-eb ¢ y = (1+ ) % andwe have

f(y) ¢/ f(2) 4(1 -0 f (x) Hf(2) (g (R
Hence

f(y)-f(x) & (M m)<@(M W Key )f,whereK(l;eri).

Since this is true for any, y I [a b], we conclude that f (y)- f (x)] ¢K|y x as desired.

Now, we recall thaff is absolutely continuous d@, b] if corresponding to any >0, we

can produce &> 0 such tfat for any collectior{(a- b )}: of disjoint open subintervals of

[a, b] with _éil|bi-a|<d, _é‘\f(p) f(q)<

12



. e : . .
Clearly the ch0|ce1:F meets this requirement, since

€

Ql\f(bi)-f(a)\ ¢§K|lq a| 3 §lp < Kd KK

Finally thecontinuity of f on | ?is a consequence of the arbitrarinesfapb]. vy

Remark 1.4.2 p4,p.5 If f :(a,b)- R is convexThe derivatie off, " x [(a,b) is best

studied in terms of the left and right derivatives defined by

£/ (x)=tim T T g () dim T TN
' y-x Y- X " ye& Yy X

Theorem 1.4.2p4, p.5 If f :1 - R is convex (strictly convex), thef/(x)and f/(x)

exist and are increasing [strictly increasing]ldh

Proof. Consider four pointsv <X <y < zin I° with P, Q, R, andS, the corresponding

points on the graph of .

Y
M

Q

e e

W

Figl.5

—

Inequality (1.3.2) extended to four points gives,
SlopePQ ¢ SlopePR ¢ Slop& R ¢ Slop®S ¢Slop& < (1.4.3)

13



with strictinequalitiesif f isstrictlyconvex.

Now since SlopePR <SlopeQRiit is clear that SlopeQR increases asx =y and

similarly  that SlopeRS decreases ag ®Yy. Thus the left side of the inequality

f(x)-f(y)  f(2) -f(y)
X-y zZ -y

These facts guarantee tHat(y) andf/(y)exist and satisfy

f/(y) ¢ fi(y). (1.4.4)

increases ax - y and the right side decreasesz®\y.

A result that holds for ally [ 1°. Moreover, using (1.4.3) again, we see that

f+’(w)¢f(xx):\fv(w) ¢f(y3 :';(X) £ (y)

with strict inequalies prevailing if f is strictly convex.
This combined with (1.4.4) yieldsf /(w) ¢ f/(w) ¢f/(y) &'(y)

establishing the monotone nature bf andf /..y

Theorem 1.4.3 P4, pp.9-11]
(@ f :(@ b)- R is (strictly) conex if and only if there existan (strictly) increasing

function g:(a b)- R and a real numbal (a b) such that, forallx i (a b),
f(x)-f (c) ﬁ g(t) dt (1.4.5)

(b) Supposéd isdifferentiableon (a, b). Thenf is conve[strictly convex]if andonly
if f’isincreasing[strictly increasing].
(c) Supposef /' exists on(a, b). Then f is convex if and only if f (x)2 0 andif

f ”/(x) >0 on (a, b), thenf is strictly convex on thiaterval.

Proof(a). We supposefirst that f is convex. Choose g(x)=f/(x)which exists and is

increasing (Theorem 1.4.2) and ¢dve any point in(a, b), By Theorem 1.4.1f is absolutely

continuous onl[c, X]. By (The Fundamental Theorem®@élculus)

f(x)-f (c) :ﬁ f/(t) dt {g(t) dt,
14



Moreover, if f isstrictly convex, g =f/(x) will bestrictly increasing, from (Theorem1.4.2).

Conversely, suppose that (1.4.5) holds wijhincreasing. Leta and £ be positive with

a+ b4.Then forx <y in (a b),
af (x)+ b6 (y) { at)b( xa ¥)b Kxa (- a @A+ KW bHf x by

axt by
:bfjx+b/g(t) dt -a fj gmdt  (146)

To bound this expression from below, we replace both integrands byl

g (ax + Q/), this being the smallest value of the first integrand the largest of the second.

We obtain on the rightandside of (1.4.6)
bg( &+ Xo)gy { xa +y)bg - ax ayg x  F x¢
which simplifies to 0. Thus,
at (x)+ 6 (y) { a+t)b( xa ) b0,
which is equivalent to the inequality that defines convexity.

Finally, we note that the estimate made above is a strictonegthen st r i ct |l y i ncr e

Proof(b). Having already established half of part (a). let us supgosés increasing

[strictly increasing]. Then the fundamental theorem of calculus assures us that
f (x)- f (c) ﬁx f/(t) dt, for any cl (a b). That f is convex [strictly convex] now

foll ows from part(a). Y

Proof(c). Under the given assumption f ’is increasingif and onlyif f /' is nonnegative and

f ! isstrictlyincreasingwhen f ' is positive. This combined with part(a)givesusourresulty’

Remark 1.4.3 It can be proved that for convexity on an interval, the graph lies above every

tangent linea the graph.

Example 1.4.1 If f (x)=Xx? then it's second derivative B> 0.Thusf (x)=X? is strictly

convex . Butif f (x) = x? then it's second derivative is2 <0.Thusf (x)= X? is strictly

concave. Y

15



Example 1.4.2 If g(x)= dnXx, then g”(x):x—l2 X which is strictly convex. But if

g(x)=Inx, theng”(x) = -xiz @whichisstrictly concave. Y

Example 1.4.3 h(x)=|x| is convex function but not strictly convex, sinde’(0) does not

exist. Yy
Example 1.4.4 k(x) :x_12 with k(0) = is convex on(- g 0)and (0, % but not convex
on (- § ¥because the sintarity atx =0. Yy

Example 1.4.5 If m(x)=x® -x? thenm”(x)=6x -2, so it is convex ongl/3,2) and

concaveor(- 8¥3g Y

Remark 1.4.4 Every linear function is conveand concave function.

For example, lef be a linear function defined byf (X) =ax on a convexset, wherea is

constant.

f(/x+(1-)y) a % (+ )y g x,¥ and [0, 1
=/ax {1 -)ay X'y and /[d,1
=/f(x) {1 -)f (y) x'y and /[0 1]

Thenf isconcaveand convex. Y

Remark 1.4.5 Every linear transformation is convex but not strictly convex. Sinde iff
linear, thenf (a+b) =f (& (D). The statementholdswhdéni s concave. Yy

Remark 1.4.6P4, p.11]Our next characterization depends on the geometrically evident idea that:
through any point on the graph of a convex function, there is a line which liedbeloarthe

graph See (Figl.6).

16



v =f(x]

Figl .6

More formally, we say that a functioih defined onl has support az(ol' | if there exists an
affine function A(Xx) =f (x,) +m( X x,) such thatA(x) ¢ f (x) for everyx | |.The graph

of the support funan A is called a line of support fdr at X, .

y =f(X,) #m(Xx x) is the equation of the line with slop@ passing through the point

(X,, f (x ) on the graph off .

Theorem 1.4.4p4, p.12 The function f :(a, b)- R is convexif andonly if thereis at

leastoneline of supportfor f ateachx, i (a, b)such hat

f(x)2f(x,) ¥(x x), x' (dBb (1.4.7)
where/ depends orx, and is given by/ =f /(x,) wheref / exists, and
/T gf/(x), f(x) whenf/(x), f/(x).
Proof. If f isconvexand X, I (& b) choose/ | gf '(x), f(x) . Then
—f (x)- T (%) , / or ¢/
X - X,

17



according ax > X, or X <X, Ineither casef (X)- f (x,) 2/(x x) thatis,
f(x)2f(x,) ¥(x x).

Conversely, suppose thdt has a line of supposteach pait of (a, b).

Let x,yl (ab). If x, =/ x € Ay, /o).

Let A(X)=f(x,) ¥ (X x) be the support function fof atx,.

Then f (X,)=A(X) F A(X) @ AA Y £(X @ +)ffyYyas desired. Yy

Theorem 1.4.%17, p.5 The functionf :(a, b)- R isconvexif the function
f (X)-f(x,) -/(x- x)(the difference between the function and it's support) is decreasing
for X <X, and increasing fok > X,,.

Proof. It is equivalent to the inequalitf (x,) ¢ f (X)) ¥ (X, X), X, X X and the

reverse inequality fox, ¢ X; X, and this is a simple conseque

1.5 Convex and Concavd-unctions of Many Variables

In this section we study convex functionshodiny variables and we give soexamples for

only convex functions of two and three variables.

da b . :
Let A= be a symmetric 2x2 matrix.
B c

(@) The leading princigl minors areD, =a and D, =ac K.
(b) If we want to find all the principal minors, these are giverlpy=a and D c: (of

order one) and, =ac b* (of order two).

18



Theorem 1.5.1Let A be a symmeit nxn matrix. Then we have for dli¢ kK @

 Ais positive definite iff D, >0 .
1 Ais negative definite iff(- 1)k D, 0.
f Ais positive semidefinite iff D, 20.

1 Ais negative semidefinite iff- 1) R ©.

Definition 1.5.2 [27, p.23Q (The Hessian matrix)

The Hessian matrix of :R- R" at the pointx is the nxn matrix

fllll(X) f (X) fﬂ(x)
o () FLX) . FLx)

H(X) &21: R 21:
&

() Tra(x) .. i (x)

The Hessian of a function for which all second partial derivatives are continuous is symmetric

for all values of the argument of the function.

Theorem 1.5.2 Let f be a function of many variables witdontinuous partial derivativesf

first and second order on the convex operSsdhen we have:

1 f isconcave iffH (x) is negdive semidefinite" X | S.

1 If H(x) is negative definite" X IS, then f is strictly concave.
1 f isconvexiffH (x) is postive semidefinite" x I S.
)l

If H(x) is positive definite” x 1S, then f is strictly convex.

Example 1.5.1Let f (Xy, X,)=2%, -X, X7 2% X, XF

f/ (X, %,)=2 -2x; 2x, and f) (X, %) =L-2+ X,

a2 2 o
HX)Ze, _,
(; +

D, =2, ,DO=

19



ThenH (x) is negative semidefinitdhusf i s concave. Y
Example 1.5.2Let f (Xy, X,)=2%; -X, X7 XX, X&

f/ (X, Xp) =2 -2x, %, and f) (X, %) 2 -x +2x
&2 1 o

H (X):ael 5 0

(; - =

D,=2,D, 3

ThenH (x) is negative definiteThusf i s strictly concave. Y

Example 1.5.3Let f (X3, X,, X5) =X7 X7 3x5 2% X, 2XX

/(X0 X0 Xg) = 2¢, 42X, X5, f, (XX, X) 4%, 24, §( x.,%,,x} Xz
a2 2 2
Hix)=22 4 0
8‘? 0 6
D,=2 , D, Jé j 4. D, |HK) 8=

ThenH (x) is positive definiteThus f is strictly convexy

1-O:0: O: Ot

Example 1.5.4Let f (Xy, X,) = X7 -X7 X X,

f/ (X1 Xp) = 2%, =%, and £ (%, %) =2%, X

a2 -196
H(X):ae:L 5 0
(;- i -

D,=2 ,D, =5
Then H (x) is neither positive semidefinite nor negative semidefinite and héniseneither

convex nor concave Y

Example 1.5.5Let f (X, X,) =2%; X,

f' (X1, X,)=2x, and f3(x,,%,) =2x,
a0 2 6

H(x)= 6

D, 0, p 4-

ThenH (x) isindefinite. Thenf is neither convex nor concave Yy

20



Example 1.5.6Let f (Xy, X,, Xg) =X, &7 %5 X;X, 3%

/(X X0 X3) =1 X, o Fo(XuXpXd 2X, X, iy xuXpX) 3

80 -1 0 &
Hx)=d 2 0 §
0 0 6&; 2
D,=0, D, %01 '21‘ =1~ D, |H$x) 6 -

ThenH (x) isindefinite " x. Thenf is neither convexior concave Y

1.6 Jensen's and Related Inequalities
Johan Jensen (1859 1925 was aDanishmathematicianand engineer He was the
president of th®anish Mathematical Sociefsom 1892 to 1903He has many valuable

scientific publicationsJensels inequalitywas named after hinm 1905

Jensen's inequalitis one of the most important inequalities in mathematics. It has many
applications and there are many inequalities associated with it.
In this section we study Jensen'sdnality for a convex functioand introduce some related

inequalities.

Theorem1.6.1 (Discrete Jensen's Inequality) [1 pp.4344]

If 1 is an interval in R and f :I - R is convex, x=(Xy,...,.x,) I1" (n 2,
k

p=(py, ....p,)is a positiven-tuple(i.e., P, >q,and bo=a p, (k 4, ...n) then
i =1

al k

fae—& p X dt—anf(x) (1.6.1)
(;bn i=1
If f is strictly convex, then (1.6.1) is strict unless=... X,.

Proof. The proof is by induction.

Forn =2, we have

which is (1.3.3).

Suppose the result is valid for &l 2¢ k M L. Then
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é-l n 0 2 nl (
f X & faggx, +—%
=, A PK 8 IELN AR
pn bnl
¢ f (X, f ,
bn ( ) Q C n° Ia—lp
pn bn-l 1 r_1_1
¢-"f(x,) +—2 f
b, " 00) g8 R 1)
P N1
= () +an f(x)
n =1
1.0
"5 &P )

holds by the result fon =2 and tte induction hypothesis.
The proof for the strict inequality whehis strictly convex is easy and is omittgd.

Remarks 1.6.1[7, p.44
(&) The condition thatp is a positiven-tuple can be replaced by p"is nonnegativer-tuple
andp,>0."
(b) Jensen's inequality in (1.6.1) can be used as an alternative definition of convexity.
(c) Jensen's origal papers (1905 & 1906) are related J&onvex functions (functions which
satisfy (1.3.4)). However, inequality (1.3.4) appeared much earlier under different
assumptions.

(d) A special case of (1.6.1) the form

a1”

acaa X; (—%%. f(x ) (1.6.2)

Remark 1.6.2@, p.31 A very simple inductive proof for the equal weight case has been given

by Aczel [Aczel 1961]Assume thatn 2 2 and that the result is known for &l 2¢ k dn,

we have

arnh 6 _41€ 1 n-2 . 1 "L g
f = f 8- g— + =

geh_,ala’ o gaén-la‘ n(n-])i?‘a n % P& E

by the case =2
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2o

a1 o 18 1 n-2 . B
f(a)

feeeaa o 5
FHaAd o 2%T1

a2n- 2 -n ’&géléq % — L Hi(a)
£ 2n-7) ¢ghE” 27 2n -9
a1, 8 17
Thusfg?,—liaz.lal @ﬁi?.f(ar)'y

Discrete Jensen Steffensen Inequality

Jensen Steffensen inequality in discrete form states that:

Let x andp be twon-tuple of real numbers such thais nonincreasingx; | [a, b]

k
(1¢i @),and 0¢S, ¢S (k E.,n 3, S >Cwhere S, =8 p(k 4...n.

i=1

Then, for every real valued convex functfafefined on[a, b,

a1 1 8 1 n.
f X = f 1.6.3
maPx &g ant(x) (163)

Theorem1.6.2 (The Integral Form of Jesen's Inequality) [17, pp.5960]

Let 7 be a continuous convex function over the range of the continuous funétiomith
bounded domaifa, b]. If / is continuous satisfying

[(@)¢ [x) ¢ (h) (%) €yl ¢ (%A (x$/ (9
for all X, in (Y., Y«) (Yo=2a, ¥ =b) and/(a)< (b) and if f is continuous and

monotone in each of thel intervals(y, _,, y, ), then

b

fad’jf(x)d/(x) % R F(9) d (™) w6
2 Qa0 8 AL -

holds.
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Proof. We shall use only Jensen's inequality for sums, i.e.,1j1fér nonnegativen-tuple if

/(a)¢ [y,) ¢ () ¢ ¢€Y¥..) (®) thenfromJenseri Steffenserinequality1.6.3),

we have

fgdj:f() /(x) ¢ yk”)(f( X)) d (/X
o /

0
1 8D yk-l k 4..n
0

p, 4/ (x) "fid 4)

¢
e F(t,) ¢ pifj {5 ())d (&), k Z..n

k-1 : Yk

with the notation p, = f)ykk_l d/(x), & _mk;j’k d/ (x)

Sincep, >0 andt, i | (k =L...n), then bf 1.6.1 we he

8. 6 25 0t O Hp £(t 2 b L2 £ (x)) d Ax
faeﬂf( )d/( ) & gﬁlpk K g¢k§.pk (k) délpk pkmk_l ( ( )) /( )
& J’ Q A A n. e N
£ nd/(x) ¢ Zanm g an P,

G k=1 < k 2 k E

n

SN EE RN L
k.

Remark 1.6.3[17, p.6Q If /(yj_l) = /(yj ) for somej, thend/ (x)=0on gy, ,, y,
X

,ejf(x)d/(x):é

The following theorem is equivalent to Theorem1.6.2

Theorem1.6.3 P, pp.3439] Let a,b,x, yl R. If w:R- R and g:R- (X, y)are
b
integrable and a nonnegative continuous functions, i (t)dt>0 andF :(x, y)- Ris

continuous and convex, then

e (o) dt o, (Y Hlo(9) (16.5)
£ Qw(t)d 0 TR (1) dt
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Proof. SinceF :(x, y)- R is continuous and convex, then by (1.4.7)

F(a)- F(x,) 2/(a xg, a (A .

Setting X,

€00 O:

Awbg()dt

rj’w(t)dt Ay

The proof is complete. VY
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CHAPTER 2

Inequalities of Steffensen's Type
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2.1 Introduction

Johan Frederik Steffensen(1873 1961) was @&anishmathematiciarand statistician He
was a professor of science at the University of Copenhagen from 1923 to H84%s many

valuable scientific publication&teffensen's inequalityas named after hinm 1918

Steffensen’'s inequalitis one of the most important inequis in mathematics and have
many applicationdt playsan important role irstudyng someintegralinequalitiesand it isused

for dealingwith the comparison between integrals ovewtsole interval [a, b] and integrals
over a subinteval of [a, b].

In this chapter we study Steffensen's inequality, @mdbduce some generalization of
Steffensen's inequality. Moreover, we study Mercer's result and the relation between Steffensen's
and Jensen's inequalitiest the end, we give a new application for special functions related to
the results of this chapter.

2.2 Steffensen's hequality(onevariable)

In the following theorem we introduce the original form of Steffensen's inequétiéy

classical formwhich has been proved by Steffengei918
Theorem 2.2.1 (The original result) 26

Assume that two integrable functioris(t) and g(t) are defined on the intervdh, b] with
f (t) nonincreasing and th& ¢ g(t) @ on|a, b]. Then

ﬁ;p_, ft)ydte :ﬁ(t) g(t) dt ¢ :H f{t) dt (2.2.1)
where / :r'j’ g(t) dt. (2.2.2)

Proof. The proof ofthesecond inequalitin (2.2.1) goes as follows:

A fOd- RO omd =" fod - fFoy dt - f() gy

_ r~j‘” [1-g@)]f @) dt -:ﬁf ®) g(t) dt

Since f is nonincreasingn [a, a+/], fort ¢a +, thenf (t)2 f (a -I/)and hence
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a+/
~

Af@dt- fE g dt

a+/ b
2f (a+/) & -9 gt - fif @ o(t) dt

~

=1 (a 4/)%5‘”1dt -:ﬁg(t) dt § b/ f/D o(t dt

=f (a 4/)%@ Jafond “Fdydi-f O d
= £ (a+/)f" g dt - F{f() o) dt

= f (a+/),’i g(t) dt -:ﬁf(t) g(t) dt

=ri g(t)gf (a+/) F(t) gt e,

where f is nonincreasing ofa+/, b], fort2a +,thenf (t) ¢ f (a )
ie.f (a+/) £ (t) ©.(End the proof of the second inequality)

Now, we prove the first part of inequality (2.2.1)

9

AfOoOd- AfMd = FHo®dt + f(Fd dt > f()

=f ' fOmdt - - g®)] f (1) dt

Since f is nonincreasing ofb- /,b], fort 2b -/, thenf (t) ¢ f (b -/) and hence

2

A fOgdt- | Ff (D) dt

-/
2

fMgmdt -f(b £) L ot) gt

1 85

-/

f O)g)dt- f (b —/)(ﬁ/ldt- ” Ao dt)

I
Do

I
Do

T fWoydt-f (b -/)go b Ao dt :godt

Tt )o)dt -f(b £) bﬁ g(t) dt
28
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IR
=3 awaf® f(b £) gt o2
where f is nonincreasing ofg, b- /], fort ¢b- / , thenf (t)2 f (b /)

ie.f (t)-f (b -/) 8.(End the proof of the first inequality). y

It is important now ta@ive another proof of the first part of inequality (2.2.1)
b
Let G(t) =1 -g(t) and p = Ij G(t) dt.

Since 0¢g() ¢ on [a b], then 02 g(t) 21and 0¢1 g(t) I on [a b]. Hence
0CG(t) ¢lon[a b].

Alsop=@pG(t) dt =:ﬁ g(t) git :=1dﬁ :g(t) A (b=d /- henceb-a =p A

Suppose the second inequality in (2.2.1) holds, then

5 a b

nfOGHdte a*ﬁf(t)dt, so fOE-g) ¢ ¢:'ﬁf(t)dt, hence
Af Odt- FHg®dt ¢ FHdt then
61: (t)dt- :Ié']f (t)dt ¢:f (tfa(t) dt, therefore

f@)dt+ " pf @t ¢:f ($io(t) dt

1 25

Thus f, f@dte O gty

D

We now give some remarks and examples to show how we can use and apply the inequality

in Theorem 2.2.1.
Remarks 2.2.1

(@) 1f f(t) isnondecreasing, then the inequality (2.2.1) is reversed.

b b
(b) From the conditiorP¢ g(t) @ we get 0¢ g(t)dt ¢ ¢ andhence

o¢c/ ® a, thusata + bandaq:b -/
29



(¢) Our strategy in provinghe frst part of inequality (2.2.1) is veiignportant and benefit
usin the sudy of some generalizations asgded with the original result

Example 2.2.1Letf (t)= 1 andg(t) =1 -tz be two integrable functions dfd, 2] such that

f (t) isdecreasing and¢ g (t) @ on|[O, 2]. Then

/ = fsg(t) dt % git et= u 1 [, 2|, and we have

Uo
Af (t)g(t) di = (nt)g t g; &’ t_zg 4
J? 2 t2g2 1‘
fp,fOd= Rt U zgl’la-—,and
U
N RO 5 R ORI
R T o i 2UUO 5_51- a4

Hence (2.2.1holds.y

Example 2.2.2Letf (t)= t andg(t)=1 -tz be two integrable functions dn 1, 1] such that

f (t) isdecreasingand ¢ g(t) @onl-1,1]. Then

1
2 o s 2g N
/=Ra) dt :_11? -té Jt ex tzu 2 E11] and
= e u-l

1
2 O L T S S
Qf(t)g(t)dt—_lht)%l > %It e 251 3,

b 1 t2

1
_ e 1
p,fOd=7d —E-ﬂ E—gl- 1g0,

Seds e L8 Ly
i fod= fd =y 810

Hence (2.2.1)oes not holdbecauseg (t)T [0, 1].y
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2.3 SomeGeneralizationsRelatedto Steffensen's hequality

In this section we introduce some generalizatimmsSteffensen's inequality (2.2.2)\Ve use

the same technique which has been usetlin [
In [10] Hayashigavethe followinggenerailzation of Steffensen's inequality
Theorem 2.3.1 Assume that two integrable functiorfs(t) and g(t) are defined on the

interval [, b] with f (t) nonincreasing and th& ¢ g(t) ¢A on[a, b] (Ais some positive

constant ). Then

AR, O ¢ CRO g dt ¢ A" F dt 2.3.1)
_ b _1 b a()
where /=RGMdt = {0 dtsuchthatG ¢) L. (2.3.2)

Proof. Since0 ¢ g(t) ¢Aon[a b], then0¢ % ¢1, andhenceO ¢ G (t) ¢lon|a, b].

We obtain from the original Steffensen's inequality (2.2.1)

A, fE)dte "HH)G()d ¢ Y d where /=7 Gt
Then

B foade :ﬁ(t)%dt ¢ ™ F{) o

or

Afi/ ft)dt ¢ :ﬁ(t)g(t) dt ¢A ’ F(t) dt which is (2.3.1)y

Theorem 2.3.2 Assume that two integrable functiohgt) and g(t) are defined on the interval
[a b] with f (t) nonincreasing and thatA ¢g(t) # on [a b] (A is some positive

constant ). Then

b a b
AR, f@dt+A “HE @) dt ¢ f(p o) dt
¢ AR F@dt A TR (D dt 2.3.3)
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where / —QG(t)dt —Q[g(t)+A]dt suchthatG ) %MZ)T (2.3.4)

Proof. Since -A dg(t) A on[a b],then 0¢g(t) A 2A, hence0¢ gg(tz);A g‘n’

thus 0CG(t) @ on|a b].

We obtain from the origisl Steffensen's inequality (2.2.1)

o

Rofmde FHGMd ¢ Fyd
Then

D

egt)+A at/
n,fode ﬁ(t) oA gt ¢ ft) dt
or
2Af f)dte " FO[aM)+A dt ¢2a 7 f) dt
or
2AF  f()dt- A R dt ¢ f(o() dt A " f(ffjdt A (D) dt
which becomes

) b-1, b b
ARy f@dt- A TRE@d -A D dt ¢ f(0) i) d

¢2A,j‘” f(t)dt -A :"ﬁf(t) dt A:+/ ) dt.

Thus, (2.3.3) is valid. Yy

2.4 Mercer'sResult of Steffensen'$nequality

Merceris amathematiciarand statisticianwho has many valuable scientific publicatioms

Steffensen's inequality
In [12] Mercer gavehe followinggeneralization oSteffensen’s inequality

Theorem 2.4.1 Let f, gandh be integrable functions ofg, b] with f nonincreasing, and

0¢g ¢h. Then
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A, fOhmde EmH e dt ¢ FHRY dt (2.4.1)

where/ is given by

a+/
~

A~ h) dt= :g(t)dt. (2.4.2)

In[11] Z.Liu claims thathere is an error in Mercer's result (2.4viherethe left inequality in

(2.4.1) may not hold under the condition (2.4t2¢.considezdthe fdlowing counterexample

Let[a b] =[0, 2], f(t) 8 3t, gt) t=and ht) 4.

Then f, g and h are integrable functions of0, 2] with f nonincreasing, atD¢t ¢4t, and

~9+/ _ 2 ~ 2 _ .
p 4t dt = Otnzlt, then 2° =2, thus/ = However,
Afo© o) d=(§ 3t)tadt (=t t-)0 8 and

f’:i/ f (t)h(t) dt= f(ﬁ- 3t)(4t) dt =4 4 €) 2

which obviously contradicts the left inequality in (2.4.1). Consequently, the inequality (2.4.1) is

not true in generai/

The followingthreetheoremsare provided so a® correct the above mentioned error and to

give some extensions of Steffensen's inequadityl thee theoremsare due to Z.Liu[1].

Theorem 2.4.2Let f, g andh be integrable functions ofg, b] with f nonincreasing, and

0¢g ¢h. Then

AfOaBde “Ffmh d (2.4.3)
where/ is given by
fj” h(t) dt= :g\(t) dt. (2.4.4)

Proof. To prove (2.4.3) let us write:

A~ f Oh® dt- FD ge) dt

=#"t Ohwdt - "F ®od - T oy d

at/
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= 90 90 40 d L {TO o0 d
Since f is norincreasing orgg, a+/ gdort ¢a + , then f (t)2 f (a + )and hence
A~ f Oh® dt- FD gt dt
2 f (@ ¥)f eh® o) gt -{T() oD dt

=f(a )88 ht)ydt - Fotdt 2 d
=fla¥)gn h®Od - [oMdt g - F{Y LY

A b a+/ b
=f (a v)g@ g(tydt - (D dt g - fiD ot

+/

= (a v)gﬁ” giydt +pFomdt =7 g dt C- f(fd) d

=t (a ¥)f, oMdt - Ff() g dt

9

=R, 90g§f(a ¥) FO) gt ©

where f is nonincreasing oga+/,b gort2a + ,then f (t) ¢f (a -I/)and hencé2.4.3)
is valid y

Theorem 2.4.3Let f, g and h be integrable functions ofg, b] with f nonincreasingand

0¢g ¢h. Then

i,f Ohod e " FO 9o d 245
where/ is given by
rﬁ./ h(t) dt= :ﬁ(t) dt. (2.4.6)

Proof. To prove (2.4.5) let us write:

rfi, f (t)h(t) dt- :ﬁ(t) gt) dt

b

=f, fOhO - FEMa®d - F{Y o dt

b

34



9

=1, 80 90 d®dt RO de

Since f is nonincreasing ogb- / , b gort2b -/ ,thenf (t)¢f (b —/)and hence
b b
0, f (t)h(t) dt- . f(t) o) dt

¢ (b +/)f, e e @t oy d

b

=f (b ")gﬁl/ h(t)dt - pjo(t) dt ‘é’ a-' i) o dt
=1 (b -/)g,j’ g(t)dt - {o(h dt ’ TR o o
=1 (b -/)grj"/ giydt ¥Hohdt oYt ? "Ry d

=t(b +/)f o®d - F{f®)g)d

b/

=R g®gf(b+) £ gt o

where f is nonincreasing oga, b- / gdort ¢b- /,then f (t)2 f (b -/ )and hencé2.45)
is valid y

The following theorem is a modified version of Mercer's inequality (2.4.1)

Theorem 2.4.4Let f, g andh be integrable functions ofg, b] with f is nonincreasing, and

0¢g ¢h. Then

,ﬁ/ f t)h(t) dt ¢ :ﬁ(t) gt)dt ¢ ’ DD dt (2.4.7)

where/ is given by

A hd= "gndt =" pydt (2.4.8)

Proof. The proof follows fron Theoren 2.4.2 and Theorem 2.4)8
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If we now apply the aboveounterexamplen page33 to Theorens 2.4.2 and 2.4.3, the

results their will hold.

inTheorem 2.4.2 {4t dt= _fidt, then 22 =2, thus/ -

2

nftow) dt= Oz(ﬁ 3t)tdt (@ t3-)§ 8 and
f‘j‘” f ¢)h(t) dt= :(pj- 3t)(4t) dt =4 4 t—3)2 12 Hence (2.4.3) holds.

In Theorem 2.4.3 r”i/ 4t dt = Ozﬁdt, then :(4( 2 /-)2) 2, thus/ 2-=/

b 2 2
Afegdi= (§ -3t)tdt @t t3-)0 & and
ﬁs—/ f @)h(t) dt= ;I’(ﬁ- 3t)(4t) dt :4( 42 '[-3)3§ 457¢ Hence (2.4.5) holds.

Remark 2.4.1 Settingh(t) =1 in Theorem 2.4.4, we obtain Steffensen's inequality (2.2.1).

2.5 TheRelationship between Steffensen's and Jensemltsequalities

In this section wdocus onthe relationship between Steffensen's and Jensen's inequalities

through the definition of carex function.

The following theorem has an importanle inthe proof of Theorem 2.5.2
Theorem 2.5.1 [#] If f is a nondecreasing nonnegative integrable functiof@ph] , then

1 X 1 b 1 b
—Nf — f
< a (wWduc 5 _aaﬁ(u)du ¢ﬂ ) (f du

for everyx | [a, .

Using the subitution g(t)=/ G(t)/fj G(t) dt, where />0, and” § (Jit > (then

(2.2.1)becomes
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0
2 f)die ﬁ(t)ae/G(t) Bt ¢ ™ Fo o
0

LY gqu(t) dt
or
) / b at/
n,fOdte o CROGmdt ¢ o) dt.
n
Hence
b
A f (t)G(t)dt a
/1,75/ f(t)dt ¢l Nb(G)(t)(d)t 1 “Rf ) dt. (2.5.1)
n

These inequalities are true for evargnincreasing functionf if and onlyf " X I[g b]

0¢/F{GMdt ob x) (Y dt (2.5.2)
0¢/f GM)dt qx a) @Y dt (2.5.3)

hold and the second inequality in (2.5.1) is valid if and only if
(2.5.4)

/fGmdte(x -g :ﬁS(t) dt and ~ Gff) dt D

Theorem 2.5.2 [Z, p.189 Let f (Xx) be a nonnegative nonincreasing function[anb] and
f( ) be an increasing convex functidor u2 0 with 7(0)=0. If g(x) is a nonnegative

nondecreasing function ofg, b] such that there existgostive function g,(x) defined by the

equation
0:(X) fee——= 2900 51 (2.5.5)
ggl( ) =
and thatf’j g,(t)dt¢1, then the following inequality is valid
23 Ogdt 2 1 o
~b %7@ £ f(t))dt (2.5.6)
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Proof. Using Jensen's inequality for convex function (1.6.5) and the second inequality in, (2.5.1)

we have
A3 () g(t) dt 5,j§ga)f (fO)dt 1 o
Ta 3 g ¢—|j £ f())dt (2.5.7)
ge fomd ¢ poma /
provided that
gﬁfﬁg(t)dt 8 gt dt ¢ (x a)rj oD dt, fﬁ(t) dt © (2.5.8)

hold for everyx | [a, ] .

The second inequality in (2.5.8) is trivially valid. On the other side, the increasing convex

function f satisfies the contion 7(0)=0, thatisf(ax) ¢ a fx), 0 ¢a 1, and we have

= g)dt 9,
Fe dtLQ t) @it
& ol @bgl(t)dt & Df

f%r”s gt § BO)t

aro i § ¢
19 ggl(t) > o(t) dt
b

b
¢ A g,(t)dt 7
ihe ; 0.t

-I-O=O=®8< o: O

&
&
e
e
¢

5,050 §to’
¢ fomad 0 =98 o)

7omd o

6

= rj’l.dt [ 9) dt
= (b -a) fjg(t) dt

Since g(t) is a nonnegative nondecreasing function, we have from Theorem 2.5.1

rlag (t)dt¢bi B(Odt then (b-a) * gff)dt Ex & * gV

Hence the first inequality in (2.5.8) is also satisfiéd.
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The following theorem is generalization of Theorem 2.5.We follow Z.Liu in [11] with

modification. Let us first givéhe substution

9(t)=G(1) ,j"” h(t) dt/ :ﬁ(t) dt where/ >0, and: Gf{ it > (then(2.4.7) becomes

h(t)dt 9
%()r; OF & ¢* Hony a
ge QG(t)dt 0

9

n,fOhOde ﬁ(t)

or

a+/ h q "
[, fOh) oltcnra‘b—(t)t :ﬁ(t)G(t) dt ¢ FHHD dt

A Gt

oy

=

Hence

Y

[, fOhod ﬁ(t)G(t) dt ¢:‘” O HD d

_ _ (2.5.9)
A hodt 7 G ()t N LOL:

The= inequalities are true for evemgnincreasing functiorf if and onlyf " x i[a, b]
a+/ b b b
0¢ ﬁ h(t)dt ) [(t)dt ¢ ) h(fy dt . cQN: (2.5.10)

0¢ rj‘” h@)dt F(dt ¢ hpdt :G(I) i (2.5.11)
hold and the second inequality in§®) is valid if and only if
A hmdt “ghdte *H@dt QY and | G(Y dtfD (2.5.12)

Theorem 2.5.3 Let f (X)and h(X) be a nonnegative nonincreasing function[anb] and
f(u) be an increasing convex function farz2 O with 7(0)=0. If g(X) is a nonnegative
nondecreasing function ofg, b] such that there exist posiive function g,(X) defined by the

equation

g,(x) Fe3X) g(x) h(x) (2.5.13)

. b
for everyx | [a b] and thatfj g,(t)dt¢1, then the following inequality is valid
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“R N F( ()t
a+/

[ ht)dt

é.Pf
b MOLICL

(2.5.14)
2 { ot

[-O:0e0: Ot

where/ is given by iy Q h(t)dt _faEQ g(t)dt .

Proof. UsingJensen's inequality for convex function (1.6.5) and the second inequality in,(2.5.9)

we have

8. 5 b

f (t)g(t)dt f(f h(t) £( f(t))dt

el b()g() @Q g ()t f ag) (f(v)d (25.15)

ge f‘;g(t)dt 0 Qg(t)dt ﬁ h(t)dt
provided that

a2 gtydt T gndte *ngdtd g dt, @D dt 2

gdgg(t) t g f0dte h(pdtiy o(hdt  FY dt (2.5.16)

hold for everyx | [a, b].

The second inequality in (2.5.16) is trivially valid. On the other side, the increasing convex
function f satisfies the conditiorf(0) =0, thatisf(ax) ¢ a x), 0 ¢a I, and we have
0

= gt)dt 9
,ae gt I 6
e % 7 o.dt 82 D

f%ﬁ g(t)dt § gt

ap ag() 6. O
) %(tee 3 éit
b 2 2) (t) -
¢ { g,(t)dtf ¢ g(t) dt
A > fomad g;
ge ]
2 0.0 7590 Gro”
¢ fowad iU =85 g
A omdt g
6

&
&
¢

Bo0 =l & oo

Ah®dt o) dt
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Since g (t) is a nonnegative nondecreasing function &ift) is a nonnegative nonincreasing

function , we have from Theorem 2.5.1

A gt . - CL
b

A hOd  f h(t)dt
then § h()dt g €t ¢ "o dt ~ ge)dt

Hence the first inequality in (2.5.16) is also satisfiéd.

Remark 2.5.1 If h(x) =1 in Theorem 2.5.3,then (2.5.5) an¢R.5.6) holds where

=

/= BRg(t)dt .

3

2.6 Applications for Special Functions

Here we givesomenew applications related tthe generalizations of Steffeas's irequality.

Theresults ar@btained using the sanechniquessin [7].

Application 2.6.1 Consider the Bessel function of the first kind

3,(2)=g,(2) rj(l -t?)“'% coszt dt, Re) %- (2.6.1)
where
54z 's
0
g@z)=—5%——. (2.6.2)
e R

For thecurrent work the interest is whéioth zandv arereal.

Let usconsider the incomplete beta function
B(a, bx):fj w1 -u)?t dy, (2.6.3)
andthe Beta function given by

B(a, 8=B( a ;1 %, (2.6.4)

then
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1
5V = 2.6.5
BV (2.6.5)

21 .
Proof. Since f (t) =(1 -t2)v 2 is nonincreasing fot | [0, 1] and v >% :

Let g(t) =coszt . we have that 1 & () ZXforti [0,1], A=1and

G(t)= %(coszt +1),

/—lm(coszt +)dt %geﬂ 1

¢
Applying Theorem 2.3, 2ve have

1 1 .
then
7,012 Vg %® gyl
f,@-t?) 2dt - ﬁlp 2 d e RTIEL:
that is,
? 2 V‘% ‘]v Z) / ZV%
A1) 2t 2 "L ) Zar S0y 2Samy-d

If we let
a v-1
G@FQQ{QZm
then (2.6.6) becomes

i 7y (2
GU-2607) ¥ () GQ

A simple change of variable =t? in (2.6.7) gives

NI

(L-u)2d

G(a)= r”jz u

N

and so

4 2

1
;a¢2ﬁ?dt (2.6.6)

(2.6.7)

(2.6.8)



Ga)=1iBil v & 3 | (2.6.9)

2

NI~
R

Thus substituting (2.6.9) into (2.6.8) produ

The importance of inequality2(6.95 is in the comparison between the two famous types of

special functions in mathematics using the Steffensen's inequality.

Application 2.6.2 We now usethe orignal Steffensen's inequality (2.2.1)itkw

L Sinz
/—racoszt dt —
Applying Theorem 2.2.1ye have
o~ V-3 ‘]v (Z) ! v 3
rl]/(l-tz) 2 dt % ¢ @ t3) 2 dt,
then
1 v-t 1/ v X J (Z) / v &
A@-t2) 2dt - AL t7) 2 ) -2 dt. 2.6.10
I'a(t)dt Oﬁt)dt&/@(Z—) O(:lﬁ) dt ( )
If we let
a v—1
G@=p 12) 2.dt
then (2.6.10) becomes
G@)- G( /) % ax ). (2.6.11)
Hence
1_a1 1
G(a):QB%,V 5 & : (2.6.12)

Thus substituting (2.6.12) into (2.6.11) produces

~

a1 161, B 1 ) 1,141 5
Vro o0 5@y 3%) 2B¢2V¢‘e2'2+’ Yo Y

B
¢

1
2
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CHAPTER 3

More Generalizations of Steffensen's Inequality
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3.1 Introduction

In this chapter we introduce e v er al i nteresting results o
integral inequality.We focus onthe work of Pecaric and WiilSrivastavaand give some
generalizations. Moreover, we study weaker condition for this generalizafibtise end, we

give new applications for special means relate8to e f f enagsiatity 0 s

3.2 Pecaric's Generalizatias of Steffensen's Inequality

Josip Pecari¢born 3 September 1948) is one of the famGusatianmathematicians in the
recent30 years. He published hundreds of papers in the field of inequalities. He is now a staff

member of Zagreb university in Gitia.

In [23] Pecaric gave a gener alwhichiaveiy onportantin o8rt e f f
study We follow Pecaricand introduce morg e ner al i zati ons ofinth§t ef f «

following two theoems

Theorem 3.2.1Let h be a psitive integrable function ofg, b] and f be an integrable function
such that f (x)/h(x) is nonincreasing or[a, b]. If gis a realvalued integrable function such

that0¢ g(x) @ foreveryx i [a b], then

AfOgmde “Ffadt (3.2.1)
holds, where/ is the solution of the equation
A h@dt= g dt. (3.2.2)

If f (x)/h(x) is nondecreasing o, b], then the reverse of inequali$.21) holds.

Proof. To prove (3.2.1) let us write :

"t (t) dt- :ﬁ(t)g(t) dt

Iy

"t ) dt ﬁf () g(t) dt b/ 7t o(t) dt

|
D

AL omIfmd - Ff() gy o

= 7 nO 901 g dt AT oo

f(t)

SinceW is nonincreasing ofg, a+/], fort ¢a + ,then]c ©, f@+/)

h) h(a+/) andhence
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a+/
~

A7) dt- :ﬁ(t)g(t) dt

, f@+/) s

h([L -g(t)] dt -:+ﬁf(t) oD dt

h(a+/) 13
~T@Y)as nayar - *Hn g dt 8-° & o di
ha+/) &8 AN oY dto- |
_f@+/)ar at/, 5 b
= a)h®g(t) dt - [hY) o) dt 0 " AY d) d

h(a+/) ¢

= @) 38 ity gy ot + o o) ot - Ry o) dt §

A

h@+/) ¢
-, fOg dt

_f@+/) b
" ha+/)

h® g dt - (Y g(t)% dt

T | , fe),f@+/)
SlnceW is nonincreasing ofa+/, b], fort 2a + , then h(t) ¢ h(a+/)’

0¢g(t) 4,then0Cg(t)h(t) ¢h(t) and hence

+

Ttdt- CR© g dt

I

af (a+/) f(t) o
Sharr) hp & %Y

gt

=

Theorem 3.2.2Let the conditions of TheoremZ231 be fulfilled. Then
b b
rj f{t)g(t)dt? b_ﬁf(t) dt

holds, where/ is the solution of the equah

,ﬁ/ h(t) dt = :ﬁ(t) g(t) dt

also

(3.2.3)

(3.2.4)

If f (x)/h(x) is nondecreasing oi&, b], then the reverse of inequality (3.2.3) holds.

Proof. By sulstitution g(x)- 1- g(x),/ - b -a +in Theorem 3.2.lwe have

Af OL-g)]dt ¢ 7 (O dt,
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then

Af O dt- “FHo®dt ¢ ) dt,
thus

b/

A fOd+ Ff@dt - f(fpt)dt ¢ f(tppt andhence (3.2.3) holds.

where/ is the solution of the equation

Nt‘)_

A "ht) dt = :Iﬁt)[l _g(t)] dt ::h(tﬁdt ;k(t) o dt

andthus

b/

A h@)dt= "Fhdt +  he)dt - hD) o) dt hence (3.2.4) holds!

Remark 3.2.1For h(t) =1,we have the welkknownSt e f f ensen@xl) i nequal it

3.3 Wui SrivastavaGeneralizations of Steffensen's Inequality

Wu and Srivastava gaw®me improvements and generalizatiohSteffensen'sequality.

In this section we introdecs e ver al gener al i z eidequaldyr(z2ilpns of

The following Lemma will be used in proving the following theorems.
Lemma 3.3.1p§] Let f, gandh be integrable functions defined ¢a& b]. Suppose alsthat /

is a real number such that

rjwh(t)dt = :ﬁt) dt = bb_/hﬁ) dt (3.3.1)

Then

R

AfoOamd= “Frohy af () Ha /rge o) dy

¥ I’i,[f t)-f (@ +#)]g(t) dt (3.3.2)
and

2

AfOomd= "Faf®) (b A g dt

+B,(TOND 210 0 /) @) oY )dy  (333)

Proof. The assumptions of the Lemnmaply that
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ata+¥ b and aChb -/ b
Firstly, we prove the integral identity (3.3.2)

a+/

B (fORD-af®) f@@ A @ ofY ) dg- . () AP o

:rj‘”(f(t)h(t) f@)g(t) af() fea /)+gh@ ot dy :ﬁﬁ‘(t) gy d
B fOamdt- | FF® o) dt

=i f@+/)en® o) gt - "FIH oy de

=f @+ A" h)dt & g)ydt] - " F/F) gt dt (3.3.4)
f 3 ) A

=f (a+/) r”j g(t) dt -rjw g(t) dt) - :+ﬁf(t) g(t) dt

=t @+)(f" o dt 4, g0 d How o) - "FFD o) e
=f @+/)f], 9®dt -f f®g(t) dt

= &f@+) £ g dt. (3.3.5)

By rearranging3.3.5), we are led to the desired integdaintity (3.3.2) asserted by themma.

Secondly, we observe that the following assumption of timenha:

rﬁ_, h(t) dt = :g(t) dt

implies that

,j"h(t)dt- :Iﬁt) dt = -:g(ﬁdt

Hence

a+b a /)

h(t) dt = b Pt - (D] dt

By appealing to the integral identity (3.3.2) with the following substitutions:
/- b-a-/andg(t)- h(t)- g(t),then we have

B Oho-gu]di= “HTOD 27 M Fb /) gl MY o) o

+f, [f® 10 N]h) -g®)] dt

or
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0

AfOhO- "EOg®md= " {HRY dt 5 [fe) £(b H] d) d

4 Ifl, [f@) £ ®-/)][h(t) -g(t)] dt

or

Tr@h@dt+ AR dt - fF( oy de= (R o

I

CFTO-10 -Hlo® dt+F [ 1 b-H]he) o] d.

Thus, thantegral identity(3.3.3) holds.
The proof of the Lemma is thus completgd

The following theorem providesgeneralization tohe classical Steffensemequality.

Theorem 3.3.1R8]Let f, gandh be integrable functions defined ¢a b] with f nonincreasing.
Also let0¢ g(t) ), ti [a, b].

(a) Then
B, fOhOde " FORD-gf®) F(b /) ged oY) o
¢ ,j’f ) g(t) dt, (3.3.6)
where / is given by
'rj/h(t)dt: :ﬁt) dt (3.3.7)

(b) Then

0

AfOamdt e “FOhY af® fa /rge) of ) dy

¢ 57 FOh dt, (3.3.8)
where/ is given by
|'§+/ h(t) dt = :ﬁt) dt. (3.3.9)
If f is a nondecreasing function, then the reverse inequaliti@s3rg(and (3.3.8) hold.
Proof of part(a). Sincef is nonincreasing ofg, b- /],fort ¢b -/ ,thenf (t)2f (b /),
sof t)-f (b /) ©.Then

b/

A ef ©)-fo-/) gt)dt2 o, (3.3.10)

Also, since f is nonincreasing ofb- /, b],fort 2b -/ ,thenf (t)¢f (b -/), so
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f(b-/) £ (t)2 0andsince0¢ g(t) ¢h(t), then02 g(t) 2h{),so
O¢ch(t) -g(t) K(t). Then

f'ﬁ-/ gf 0-/) 1) gn@® g(t) dig 02 (3.3.11)

Using the integral identity (3.3.3) together with the integral inequalities (3.3.10) and (3.3.11), we
find that

1 0o0d= "fief® 1o A g0 a
+B (fOh® 2f® F0 /) @ o) dy

2

(fOh® &f® £b /) gh@) o ) dg

Dt

2

Cf @@ dty

Dt

Proof of part(b). Since f is nonincreasing ofa+/, b], fort2 a +,thenf (t)¢f (a +),
sof (t)-f(a ¥) @ Then

A, &f @-f@+/) gt)dteo. (3.3.12)
Also, since f is nonincreasing ofa, a+/], fort ¢a + ,thenf (t)2f (@ +), so

f(@+/)-f({) ® andsinceO¢g(t) d¢h(t),then02 g(t) 2h{),so
0O¢h() -g(t) k&(t). Then

rjw gf @+/) £(t) gh@® o(t dtg Od (3.3.13)

Using the integral identity (3.3.2) together with the integral inequa(i&s12) and (3.3.13), we
find that

2

AfOamdt= “F O 2T(H Ha /rge) o)) dy

+0, [f0)-f@+)]g)dt
¢H’ (fOhD) &f® @ /¥eghe) o )dy
¢H’ fOhdy

Remark 3.3.1 It is clear thatWwu and Srivastavaeducd a modi fi ed ver si on

inequality(2.4.7)using Theorem 3.3.1
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In particular, upon settind(t) =1 in (3.3.6) and (3.3.8pf Theorem 3.3.1we obtain the

folowing refi nement of Steffensends inequality

Corollary 3.3.1 Let f, gandh beintegrable functions defined @ b]with f nonincreasing.

Also let / :fjg(t) dt and 0¢g(t) @ ti [a b].

(@) Then
B, fOde "Fio-ef® F0 A dao®)dy
¢ f—;f (t)g() dt. (3.3.14)
(b) Then

2

AfOgw)dt ¢ ﬁ( f() af(t) F(a /xdeg(® ) d

¢ 6” f(t)dt. (3.3.15)

If f is a nondecreasing function, then the reverse inequaliti8&s3ri{ and (3.3.15) hold

In the following corollarieecaric, et al @aye anotherefined versiorof the results given by
Pecaric inTheorems 3.2.1 and 3.2.2.

Corollary 3.3.2[21] Let h be a positive integrable function da, b] and f, g be integrable
functions on[a, b] such that f (x)/h(x) is nonincreasing ofja, bjand 0¢ g(x) @ for
everyx | [a b]. Then

b a+/é.
Af ©a®dt ¢ pgef (O

GO L@ g gy gt
c <

gh(t) h(a+/) g

¢ fj” f(t) ot (3.3.16)

where/ is given by (3.2.2).
Proof. Take g(t)- h(t) g(t) and f (t)- f (t)/h(t) in Theorem 3.3.1 (b)/

Corollary 3.3.3[21] Let h be a positive integrable function da, b] and f, g be integrable
functions on[a, b] such thatf (x)/h(x) is nonincreasing ofg, b] andO¢ g (x) @ for every
x I [a b]. Then
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Pl

4O 10D By g gt

b _4&
Cf)dte b-r)?“) h®) hb-7) o

2

¢ fft)g)dt (3.3.17)

where/ is given by (3.2.4).
Proof. Take g(t) - h(t) g(t) andf (t)- f (t)/h(t) in Theorem 3.3.1 (ay/

We now introduce more generalizationbtainedoy Wui Srivastava

Theorem 3.3.2P8] Let f, g, h and )y be integrable functions defined d@& b] with f
nonincreasing. Also leD ¢y (t) ¢ g(t) &(t) -p1), ti [a b].

(@) Then
b

rf{, f t)h(t) dt + ,j’\gf(t)- f(b-/) g(t)|dte Af®g)dt (3.3.18)

where/ is given by (3.3.7)
(b) Then

,j’f(t)g(t) dt ¢ :”ﬁf(t)h(t) dt - rj’\gf(t)- f(a¥) g(y| dt  (33.9)

where/ is given by (3.3.9)

Proof of part(a). By the assumptions that the functiéris nonincreasing ofg, b] and that

0¢yt)eg) h) -M0), ti[ab],

it follows that

Alef®-f0 /) agd +f &b } f() HPhadp o
TlfO-f0 )jamd £ [ b B f(H]ah) op et

I
I

=

2 T f@) 0 AK)dt FHFb Y- f(tr] O dt

=Hlef®) fb 4 gv)|dt (3.3.20)
Using (3.3.3) an@3.3.20), we obtain

0

AfOaw dt= :_ﬁf(t)h(t) dt »( :" g0 F(b /)y g dt

*FS-,éf(b-/) £ (t) eh@) g(t) dté
2 fOhOd +TRIO Fb /) gd]dty

Proof of part(b). By the assumptions that the functiénis nonincreasing ofg, b] and that
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O¢y@)eg) h) -mt), ti[a b,
it follows that

|§+/éf(t)-f(a ) gh@) o(t) dtg r”it, f(aa J+f(% db dt
=37 1T0 f@ Mleh® o) @t [l fa §HOFdD e
2 37110 f@ MU F[f@ Y] o d

= fj [f®) F@ A]x|du (3.3.21)

Using (3.3.2) an@3.3.21), we obtain
Af®omdt= “Ff®h dt -%e:”gﬁf(t) fa /ygt@) o9 d

+7, 8f @) O gt) dt

¢H” fOhmd - HT® fa /K K| dy

Remark 3.3.2 | t i's obvious that t he mod247)falavs ver s

from Theorem 3.3.2 witly (t) =0.

By putting h(t)=1 and y t)=M, M g0, 1 Zin (3.3.18) and (3.3.19), we deduce

Corollary 3.3.4.
Corollary 3.3.4 Let f andg be integrable functions defined ¢a,b] with f nonincreasing.

Alsolet/:é)g(t)dt and 0CM () 1 M, ti[a bl

() Then
ﬁ/ f(t)dt + I\/I|75|f(t)—f(b /)| dte rj’f ) g(t) dt. (3.3.22)
(b) Then
AfOgnde “Ff)dt- |v||73| f(1)- f(a +)| dt (3.3.23)

Remark 3.3.3 Clearly, the integral inequalities (3.3.2apd (3.3.23) area sharpened and
of Steffensenbdés inequaMEDthe (2. 2

generalizedr er si on
i nequa

inequalities (3.3.22) and (3.3.23) would reducthtoclassicabt ef f ensen b6 s
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Using Theorem 3.3,2Pecaric et alobtairedsharpened and geralized versions of Theorems

3.2.1 and 3.2.2. This versions are given in following corollaries.

Corollary 3.3.5[21] Let h be a positive integrable function ofg, b] and f, g, y be
integrable functions on[a, b] such that f (t)/h(t) is nonincreasing on[a, b] and
O¢y@)eg@) & -yt) ti[a b]. Then

BfOoOde “Ffd- ,73 ¢ro

_f(a+/)
Sho ey Ky d @32

where/ is given by (3.2.2).
Proof. Take g(t)- h(t) g(t),f (t)- f (t)/h(t)andy (t)- h(t) At)in Theorem3.3gb) . y

Corollary 3.3.6[21] Let h be a positive integrable function ofga, b] and f, g, y be
integrable functions on[a, b] such that f (t)/h(t) is nonincreasing on[a, b] and
O¢Cy@)eg@) & -yt) ti[a b]. Then

e
A, fOd+ e

D

fb-/) ;
O ﬁ(t)y(t) te §f Mg dt (3.3.25)

where/ is given by (3.2.4).
Proof. Take g(t)- h(t) g(t),f (t)- f (t)/h(t)andy (t)- h(t) A(t)in Theorem3.3Qa) . Y

Finally, wepresenta general resulton@an si derably i mproved versi

inequality (2.2.1)given byWui Srivastavaby introducing the additional parameters and/ ,,.

Theorem 3.3.3R8] Let f andg be integrable functions defined ¢& b] with f nonincreasing.

Also let
0¢/, ¢ig@®)dte/, b a
and
0¢M () 1 M, ti[a b].
(&) Then
oy f(t)dt+f(b)§e:§(t) dt 4, §m | f§) f—b%e:—gi) At | o
¢ {f ©)g() dt (3.3.26)
(b) Then
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fO9w

¢§ *f (t) dt - f(b) g{t) dt Sm °| fey f-ak oh | d (3.3.27)
- a (; a -
Proof of part(a). We have

SUICFOEEINGRIOEIRICE SEC T

fOgmdt- Ff®d - FEoYdt 4 f(H

I
1

fOoOdt- “FfMdt - fEoDd + (@ d

I
I

=

=Hef®-10) g dt - 'f &Y (b o
=R ef®-f0) gt dt + [ fgb) #() dt

b b
2 rj gf ) £ (b) g(t) dt -:)--E;]g(t)dt fgb) f{t) di (3.3.28)
where the last inequality follows from the assumption that
bzb -/, b f}g(t) dt b2/, -

and

ft)-f®) 20,t [ahb]
On the other hand, from the hypothesis of Theorem 3.3.3, we conclude that the function

f (t)- f (b) is integrable and nonincreasing @ b]. Thus, by using Corollary 3.3.4 it the
following substitution:f (t)- f (t)- f (b)in (3.3.22), we find that

,j’gf(t) f (b) g(t) dt + E‘ fgb) (9 dt

b
M { ‘ f(t)-f (b Bow dt)‘ dt (3.3.29)
By combining the integral inequaliti¢3.3.28) and (3.3.29), we obtain

b b 2 b
A f dt- & f(t) dt -f(b)& dt £
pf®g)adt o N (t) dt ()geag(ﬁ t Fy

2 M rj‘ f(t)-f (b Bow dt)‘ dt (3.3.30)

Thus, the inequality (3.3.26) hold§.
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Proof of part(b). We have

AfOamdt- “F o d #(b)%,lz = o(pj ot

f (t)g(t) dt- ’ﬁ f(t)dt 4, f(b) b (R oY dt

I
I

fOgMdt- “f FOdt+ @) dt - (DY d

I
1 28

af @)-f (b) g(t) dt ﬁ fgt) #(b) dt

I
I

¢ r:t]) gf @) £ () g(t)dt _:+ﬁg(t)dt

where the last inequality follows from the assumption that

fgt) f¢o) dig (3.3.31)

ata ¥, a ,j’+g(t) dt¢ a /,+ b

and

ft)-f®) 20,t [ahb]
On the othe hand, from the hypothesis of Theorem 3.3.3, we conclude that the function

f (t)- f (b) is integrable and nonincreasing @ b] . Thus, by using Corollary 3.3.4 itv the
following substitution:f (t)- f (t)- f (b)in (3.3.23), we find that

b

rj’gf(t)-f(b) g(t) dt -fﬁg“)dt ) f(b) dig

b
¢ M ‘ ft)-f (a o0 dt)‘ dt (3.3.32)
By combining the integral inequalities (3.3.31) and (3.3.32), we obtain

D

A ©g)dt- ﬁ f (1) dt #(b)%gz -:g(pjdt
b b
¢ M ‘ f(t)-f (a Ho0) dt)‘ dt (3.3.33)

Thus, the inequality (3.3.27) hold§.

Remark 3.3.4 It is clear thatthe classicaSt e f f e nguadity @.2.1) woule follow as
special case of the inequalities (3.3.26) and (3.3.27) Wler 0 and / , = /,. Moreover, it is

worth noticing that lie integral inequalities (3.3.2@)nd (3.3.27)togetheris stronger tharthe
classicaSt ef f ens e ndaxl)ififf@2Qual i ty (
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3.4 Weaker Conditions for Pecaric'dGeneralizations

In this section we study weaker conditionsttte parametef in Pecaric'gjeneralizations
We present here two theorems and twooltaries given by Pecaric and Kalamirand these
theorems are due to [18].

Theorem 3.4.1 Let h be a positive integrable function da, b] and f be a nonnegative
integrable function such thdt (x)/h(x) is nonincreasing on[a, b]. If g be an integrable

function on [, b] such that0 ¢ g(x) ¢ for everyx I [a b, then

-

AfOamdte :”ﬁf(t) dt (3.4.1)
holds, where/ is given by
rj”/ h(t) dt 2 :ﬁ(t)g(t) dt (3.4.2)

If f (x)/h(x) is nondecreasing ofg, b], then the reverse of the inequality in (3.4.1) holds,
where/ is given by (3.4.2) with the reverse inequality.
Proof. To prove (3.4.1) let us write :

rj‘” f(t)dt- :ﬁ(t)g(t) it

=37 fod - "o d - f{ o d

=370 oI f®d - {() o ot

= §” hoi —g(t)]% dt - AT() oY dt

Since% is nonincreasing ofg, a+/], fort ¢a + ,thenfh8 2 fh?;:;; and hence

rj‘” f (t)dt- :ﬁ(t)g(t) dt

2 fhEZI;; A~ hOL -9l dt - F{f(H) op dt

- LEZI;; g,j’ h@dt - “HhD o) dt 8" FY o a

. Lg::;;éﬁh(t)g(t) dt - “ARO oy dt §-° FY o) d
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_f(a+/) s b a+/
~ h(a+/) %Q h©g(®) dt+ ANY oY dt- — R d) dt

- R, fOg) dt

_f@+/) b b (1)
= has) B, MO dt - {hO oChF dt
Since% is nonincreasing ofa+/, b], fort 2a + ’then];qg; ¢ fhg:;;’ AlSo

O¢g(t) 4, thenOCg(t)h(t) d¢h(t), and f be a nonnegative intedie functionand hence

f (t)dt- :ﬁ(t)g(t) dt

a+/
~

)

dfa+/) f() & o

= R, g(t)h(t)geh(aw) n() S

Theorem 3.4.2 Let the conditions of Theorem431 be fulfilled. Then

9

AfOgw)dt? : fif (1) dt (3.4.3)

holds, where/ is given by

'rj_, h(t) dt ¢ :F{t) g(t) dt (3.4.4)
If f (x)/h(x) is nondecreasing ofe, b], then the reverse of the inequality in (3.4.3) holds,

where / is given by (3.4.4) with the reverse inequality.

Proof. By sulstitution g(t)- 1- g(t),/ - b -a +inTheorem 3.4.1we have

2

A f OL- gt)]dt ¢:'ﬁf (t) dt,
then
fjf t) dt - :ﬁ(t)g(t)dt ¢:" fi(t) dt,

thus

-1 b-/

A fOdt+ :’_ﬁf (t) dt -:f(ﬁg(t) dt ¢ f (gt

hence (3.4.3) holds.
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Where/ is given by

A nOd2 FOR 9] d

SO
A h®dz o d - g o,
thus
R hM)dt2 Ah)dt + I dt - h(Y g§o dt

hence (3.4.4) holdy.

Taking h(t) =1 in Theorems 3.4.1 and 3.4.2 we obtain the following weaker conditions for

the paramete/ i n St effensends inequality.

Corollary 3.4.1 Let f be a nonnegative nonincreasing function[anb] andg be an integrable

function on[a, b], with 0¢ g(x) @ for everyx i [a b]. Then

2

AfOamdte ﬁ f(t) dt (3.4.5)

holds, where

b

/2§ a)dt (3.4.6)

If f (X) is nondecreasing of@, b], then the reverse of the inequality in (3.4.5) holds, wiere

is given by (3.4.6) with the reverse inequality.

Corollary 3.4.2 Let f be a nonnegative nonincreasing functionfanb] andg be an integrable

function on[a, b], with 0¢ g(x) @ for everyx i [a b]. Then
rj’f t)g(t) dt 2 : Af (1) dt (3.4.7)
holds, where

/¢ rjg(t) dt. (3.4.8)

If f (x) is nondecreasing of@, b], then the reverse of the inequality in (3.4.7) holds, wHere

is given by (3.4.8) with the reverse inequality.
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Now, we give some exam&o explain the results introduced Theorems 3.4.1 ah3.4.2

FO) _o
h(t)

with [a, b] =[O, 3]. By simple calculations from (3.4.2) we have

FSH dt 2 S%% gt,so/ 2
C =

If / =1, then (3.4.1) becomes

S8 1d, U0 - & & t o
met%-é git < i dt, thengee‘g 3 Qé—e‘

¢

which isa contradictionThe reason is becauge=1 <3 2.

Example 3.4.1Let h(t)=1,g(t) 4 % andf (t)=e', then—2 is decreasing

-t— andthen/ 2 §
6 2

0 SB*QJO

OIOOx

(<e ) 50 0.6832< 0.632

9 o:0®

If / =3/2,then (3.4.1) becomes

o 3.
3 a U0 32 a & t & 0 132
Qet;ﬁ;-é gt < dtthenge 31 3 Q%e‘ 6 (<e').” s00.6832< 0.776
¢ ' ¢ ¢ ' o
which is true.
If / =2, then (3.4.1) becomes
o 3.
S oca U6 2 a4 &t o 0 \2
met%_é gt < ¢ thengee‘% = Q%e* 6 (<et);.s00.6832< 0.864

which is true.

) e
h(t)

Example 3.4.2 Let h(t)=1,g(t) 4 % and f (t)=e",then is decreasing

with [a, b] =[O, 3]. By simple céculations from (3.4.4) we have

3,
3 3.t B a t2 o 3
= dt ¢ %~ @t so/ ¢gp — @ then/ ¢
R, og 3 < ¢ 6 & 2
If / =1, then (3.4.3) becomes

w

3 & t & 3 a &4 t & 0 33
Ae'sl-— &t > dt, thenge ' — --lLe‘ 5 (>e"}, s00.6832> 0.085
L % 3 g’ . fi = Z‘l 3 03" 0 (>,
which is true.

If / =3/2,then (3.4.3) becomes

3

ﬁe'tég-% t >;ﬁ* dt, thengee'tgg-% S%e* 0 (>e");2,300.6832> 0.173
* ¢ 3 &

which is true.
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If / =3, then (3.4.3) becomes
o 3,
3 & t B 3 a & t & 0 \3
Ae'sl-— &t > dt, thenge 'l — --ie‘ 5 (>e"} ,s00.6832> 0.950
L %L 3 gi o i = éﬁ' 3 93 0 (>,

which isa contradictionThe reason is becauge=3 >3 2.

If / =4, then (3.4.3) becomes

° 3,
3 14, U0 3 a & t 81
met%-é git > B dt,thengee %15 Q%e

o (>e') . s00.6832> 2.668
9 _
2

which isa contradictionThe reason is becauge=4 >3/ 2.

3.5 Applications for Special Means

In this section we study a new application of Steffensen's inequality for convex functions.

In [3], Agarwal and Dragomirproved the following theoremThey apply Hayashi's
inequality (2.3.1)n their proof.

Theorem 3.5.1Let f :1 I R - R be a differentiable function oh® and[a, b] E 1 with

M=supf’&)< pm Iq[:gfb]f (x) >andM >m.If fis integrable ofa, b], then
xi[a b] X

the following inequality holds

1 f(a)+f(b)| gb)-7@ -mb 3 g(b & f(h (&
b-ald T (X)X | ¢ 2M -m)(b g

¢ M- ”g(b 3 (3.5.1)

The case of convex functions is embodied in the following corollary, which is very important

in applications.
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Corollary 3.5.1[3] Let f :I 1 R - Rbe a dfferentiable convex function onl ?and
[a, b] E 1° with f /(b)) , f/(a). Then, the following inequality holds

f(a)+f(b) 1
2 b-

g 0)-f(a) -f'(a(b 3 @fgb(b & f(H f(x
2(f ' )- ' @)(b -a)

b
0o¢ agf(x)dx

¢ (F'()- f;(a))(b -3 (3.5.2)

Proof. The corollary follows from Theorem 3.5.1 and the observation that we can choose
m=f'(a andM =f'(b).

Now, we shall use the reswif Corollary 3.5.1 to prove the following neypg@icationfor the
special means that introducedcimapter ongespecially the arithmetic and logarithmic means.

Application 3.5.1Let p>1and0¢a ®.Then, the following hold
0¢ AE®, &) (e e) LP1 (e

1

¢ 2b- a)Ee -€)
&) (e, €)- é(b-pg & bja(-2 % U ®k
LP:i(e?, €”)
¢ P “(b- a;(é’ -€) LPe?, €°). (3.5.3)

Proof. By Corollary 3.5.1 applied to the convex functibifx) =eP*, p A, we have

gaP 4 gbP P _ap

0¢— “pb- a)

E°P-e- pei(b-ag@(ba & ©

¢ 2p(@P- P)(b -3

¢ PEP- €)(b -3
d .
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Since

b 1 daghr . gap G %1
PE-€) e &) =ife BRI CLE 8 @ w
¢ x

then

A R L
2 b-2a) pE- &)

¢ gp(e’ - &) (€, €)- pé% b-pg $&( b-)a (p°e % JU ‘e e
2p2(b- a)(@ -€) L€, &)

¢ PO 0 | pria o)

Thus (3.5.3) is valid. Yy
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CHAPTER 4

Cerone's Generalizations of Steffensen's Inequality
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4.1 Introduction

Cerone is one of the famous mathematiciat® publishel a lot of papers in the fieldf
inequalities in pure and applied mathematidse is now a staff member of Victoria University

in Australia.

In the present chapter we introduseveral new interesting results on improvements of
Steffensends iABb wegaffex some mew garadizhtions ynd extensisrfor
Cerone's generalizations. Moreover, lwgoducesomenew resultsof applications for integral

mean

4.2 Extensiors of Cerone'sResults

In this sectiorwe introduceand discusseveral nevextensions of Ceronejeneréizations of

the classicabt ef f ens ends .Weadive somariew resales o thia inatter.y

The following lemma will be useful for the results that follow.

Lemma 4.2.1B] Let f, g :[a b]- R be integrable functions ofia, b]. Further, let

[c,d] 1 [a § with / =d -c ab g(t) dt. Then the following identities hold. Namely,

g

f@d- :ﬁ(t)g(t) dt =" ( Fd) (D) oD dt C‘i( f(f f(9)L o d

+A (fd) -f@)ag(t) dt, (4.2.1)

S 5

and

2

A f O dt- :ﬁ(t) de=° (D) -f(9) oD dt +:( (g fd)(L gd) dt

+f§ (f@) £()g() dt 4.2.2)
Proof. Let
S dah=f f(hd- FOd)d awdt @23
then

S(cdaB=f f(0d-S f/f()dyde | ) ¢y de) CXfpX o
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(1 -g())f t)dt -:ﬁ(t)g(t) dt ;—f(ﬁi) g(t) dt

ojla

Lom)(fO +@)dt f) K o) dt

I
Dl

(f@) 4m)g®dt +@) Y dt

+

I

(f () @) g(t)dt £(d) ﬁ;(t) dt
(f@d) - ()g(t) dt JE fif fed))@ o) dt+@p (f@d) ()g(t) dt

1
I
Cch-

+t @)F dt (d)g:fg(t) dt + off dt * d ) it
Identity (4.2.1) is readily obtained on noting that
d ad c b 3 e d b
f (d)rg dt- f(d)éc (D dt + Jpy dt + dIfyt=f (d)g@ dt- . (1) dt
=fd)gd © d o go.
Now, we will prove the identity (4.2.2) on realising that (4.2.25{«d, ¢ h gor,

equivalently,-S(c, d; a b
S(d G b 3= S(c & ab=f f(9 gy dt - ff() d

=53 f O dir TR O dt + ] T@ o ot 20 T

fOgndt - il g) fMdt +F@ gy dt

Dlo

(f@) £@©)g(t)dt #c) :ﬁ;(t) dt

I
1 2

+RLg0)(fE Fm)dt o) Ll o) d
+A(FO F@)gmd #e) | Y dt

(f ) £())g(t) dt + fﬁ f(o f¢))(d o(9) dt+ m (f ) f(c))a(t)dt

Dlo

+f(c)gr”3 g(t) dt +° gy dt f 9y dtgf(c)cd dt

Identity (4.2.2) is readily obtained on noting that
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5. d c b d
f(c)gﬁ g(t) dt+ _py(t) dt + o dtgf(c) _dt
_ eLb d
=f (C)gg g(t) dt- . fiit
=f(c)gd © d & gO.y
Theorem 4.2.1[8] Let f, g :[a b]- R be integrable functions ofg, b] and let f be

nonincreasing. Further, @ ¢g(t) ¢land / :rj) g(t)dt =d ¢, where[c,d]E[a i
fori =1, 2andd, ¢ d,.

(@) Then
ﬁbf(t)g(t) dt ¢ jllﬁ(t) dt +R(¢, d) (4.2.4)
holds where,
R(G, )= g3 ( F(O -F(d) gv) dt e (4.2.5)
(b) Then
B fOdt- 1, dy) ¢ fn) o d (4.26)
holdswhere,
. d,) :E]p (f(c) -f()gw dt e (4.2.7)

Proof of part (a). Since f is nonincreasing ofc,, d], for t ¢d,,thenf (t)2 f (d,), and f
is nonincreasing ofd,, b], for t 2 d,, thenf (t) ¢f (d,) .
Alsosince0O¢ g(t) @, we get02 g(t) 21, ,andthenOC1 g) 1.

Now, from (4.2.1) and (4.2.3)f Lemma 4.2.1, we obtain

S(q, d; a B+f ( f() -T(d) d) d

= (TO F @) 8@®) dt i@ () g dt o
Hence, from (4.2.3)

g

R fOd+ *fTo-f(d)g d T f@andt e
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and thus (4.2.4) is valiChe requirement thaR (¢, d,)is nonnegativés clearly achievedince
f isnmincreasingandi s nonnegative. Y

Proof of part (b). Since f is nonincreasing ofg, C,],fort ¢c,,thenf (t)2 f (c,), and f

is nonincreasing ofc,, d,], fort 2 c,,thenf (t) ¢f (c,) .

Alsosince0O¢ g () d, weget02 g(t) 21 andthenOC1 g(t) 1.

Now, from (4.2.2) and (4.2.3) of Lemma 4.2.1, we obtain

S, dia b ) (o) 4(3) d) d

= (fO fE)amd £ f(c) fO) o) de o

Hence, from (4.2.3)
2

§fOomd- SO d- | (fe)- F()) of dt 270

giving (4.2.6). The requirement that (C,,d,) is nonnegativeis clearly achievedsince

f isnonincreasingangi s nonnegative. Y

Remark 4.2.1 If in Theorem 4.2.1 we take, =a and sod, =a + , thenR(g a+/) 0.
Further, takingd, =b so thatc, =b -/, givesr( - /,b) 9 . The Steffensen's inequality
(2.2.1) is thus recaptured. Since (2.2.2) holds, the¢ha andd, ¢ b giving [c, d ] E[a B.

Theorem 4.2.1 may thus be viewedaageneralization of the Steffensen's inequalityiasngin
Theorem 2.2.1, to all® for two equal length subintervals that are not necessarily at the

ends of{a, b].

Corollary 4.2.1[8] Let the conditions of Theorem 4.2.1 hold.

(@) Then

A fOamdte P d-(g -9 f(d). (4.2.8)
(b) Then

Afd-(b ) fc) ¢ FD oY dt 4.2.9)

Proof of part (a). From Theorem 4.2.1 on using the fact tBat g (t) @, gives

6 8



0C¢R(G, d) 3 (1) #(d) gt

¢rjl(f(t)-f(d1))dt ::lﬁ(t)dt (¢ & f(d)

and so

2

nfOgmdee :1ﬁ(t) dt +R(g, d) ¢:1 i de * fOfdt-(e R 1 9.

giving the inequality (4.2.8). Y

Proof of part (b). From Theorem 4.2.1 amsing the fact tha®@¢ g (t) @, gives

0¢re,.d,) f (fE) £1)a)d

¢ (FE)-fO)d b &) f(e) S d

and so
b

AfOomdtz “FOd e, d) = i dt (b d)y f(o) |, H(Ipy

Thus, inequality (4.2.9) is valid. Y

Remark 4.2.21f we takec, =a and sod, =a ¥ andd, =b such thatc, =b -/ then (4.2.8)

and( 4. 2.9) together agai n sgwnmipTheorm321St ef f ens

The following theorem ianother extensioaf Theorem 4.2.1n casei =1, 2, 3 and we think
it is new

Theorem 4.2.2 Let f, g :[a, b]- R be integrable functions ofa, b] and let f be

negative andnonincreasing. Further, 1e@¢ g(t) 4@ and / :r’j’ g(t)dt =d & ,where

[c,d] E[a g fori =1, 2,3andd, ¢d, ..
(&) Then
D oy d,
2@ ft)gt)dt¢ N ﬁ (t) dt +G2 fﬁ) dt+ R(¢, d) (4.2.10)
holds where,

R(G, &)=f ( F() -f(d) gv) di+ “F () £(d) @) dt 02 (a211)
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(b) Then

4

A fOdt C‘fﬁ () dt-r(c,, dy) & f@a) at (4.2.12)
holds where,
1€ d)=f () F(0)g0 di+ () () 9o dt 0 (4213)
Proof of part (a). Since f is nonincreasing ofc,, d], fort ¢d,,thenf (t)2 f (d,),and f is
nonincreasingn|[C,, d,], fort ¢d,,thenf (t)2 f (d,). Similarly, f is nonincreasing dal,, b],
fort2d,,thenf (t) ¢f (d,),and f is nonincreasing dal,, b], for t 2 d,,then f (t) ¢f (d,).
AlsosinceO¢ g(t) @, we get02 g(t) 21 andthenOC1 g(t) 1.

Now, from (4.2.1) and (4.2.3) of Lemma 4.2.1, we obtain

S d;ab+Sg ¢ abf( (x-tg O d i Or ¢ Ot
=R (fO @)L 9®) dt Hif(d) F(5) gD ot

+dz (f@) d,))2 g() dt :+,~ﬁ f(d) f(9) gt dt .
Hence, from (4.2.3)

filf(t)dt- " f® g dt+ : fEp dt - f() Y o

+E(FO-F@)gm dt +7F () f(d)) gy dt e

and thus (4.2.10) is validlhe requirement thaR(c,, d,)is nonnegatives clearly achieved

sincef is nonincreasing angisnomegati ve. Y

Proof of part (b). Since f is nonincreasing ofge, C,],fort ¢c,,thenf (t)2 f (C,),and f is
nonincreasing ofd, c;], for t ¢c,,thenf (t)2 f (c;). Similarly, f is nonincreasing de,, d,],
fort 2 c,,thenf (t) ¢f (c,),and f is nonincreasing ofc,, d,], for t 2 c;,thenf (t) ¢f (c,).

Alsosince0O¢ g(t) @, we get02 g(t) 21, andthenOC1l g(t) 1.

Now, from (4.2.2) and (4.2.3) of Lemma 4.2.1, we obtain

S, diah-S¢ ¢ ab( (0 ) otd g €F O O
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(10 FE)amd FH ) o) o) d

+F (1O FE)0 & T () T)L o) dt o

Hence, from (4.2.3)

0 ds

AfOIOd- “FOd+ @ dt - (7

+ ﬁb (f(c)-f@®)a) dt +:3ﬁ f(c) -f()) o(d dt ©

giving (4.2.12. The requirement that(C,, d;) is nonnegativés clearly achievedince

f isnonincreasingangismonnegative. Y

The following lemma will be uskfor recapturing the classical Steffensen's inequality (2.2.1).

Lemma 4.2.2 Let f, g:[a b]- R be integrable functions of@, b] and let f be negative and
b

nonincreasing. Further, €& ¢ g(t) ¢ and/ = N g(t) dt.Then

fj_/ f(t)dt + bﬁ( f(t) £ (b)) o(t) dte ’ FD dt (4.2.14)

Proof.

rj’_/ f(t)dt + :'ﬁ(f(t) £ (b)) g(t) dt

oy, fOd+ “RIF®) £ b)dt

=f, fOdt+ "FArwd -fo)

=r'f5 f(t)dt -f(b)(b-/ -3

:,j’ f(t)dt + (b)(a+/ -b)

¢f f @) dt + (b)(b- b) whereata ¥ )

=f f @)t

¢{”f@adt,

whereata ¥ MWandfisnegati ve and nonincreasing. Y
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Remark 4.2.3 If we let ¢c,=a in Theorem 4.2.2then we haved,=a + . Further,

taking d, =d, # gives usc,=C; H F. Hence(4.2.10) and (4.2.12) together becomes
Bof@d+ FfOdt @ f@a() dt

¢H” fOdt+ FFMd v E® FD) oD dt

Using Lemma 4.2, we obtain

Aofmd+ AfOd @ f@abd ¢ fpd ¥ D F

The classical Steffensen’s inequality (2.2.1) is thus recaptured.
Corollary 4.2.2 Let the conditions of Theorem 4.2.2 hold.
(@) Then

2f f (g dte “F M dt + fFPdt (G- 9 f(d) (s -2 f(d). (4215
(b) Then

A f(t)dt+cbﬁ(t)dt b d)f(c) (b dr f(g 2:¢fﬁ d) d  (4.2.16)

Proof of part (a). From Theorem 4.2.2ndusing0¢ g (t) 4, we obtain

G1

0CR(G. &) 7 ( () () oy dt 7 f() f(<d) o) d
¢,j“(f(t) £ (dy)) dt fﬁf(t) f ¢d,)) dt

= fOd -3 f(d) FO A 3f(d

and so

2f f g dt ¢ leﬁ(t) dit +:2 i) dt R(g, q)
¢ rj f (t) dt +:2ﬁ (dt + f@dt (-9 f(d)

R O e 8 F(d),

which impliestheinequdi ty (4. 2.15). VY
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Proof of part (b). From Theorem 4.2.2ndusing0¢ g (t) @, we obtain

06rE,.d;)  (1€) FO)oMd  Hf(c) F(9) b d

=

¢f () +®)adt {fﬁf(%) f(t)) dt

oo

2

=b 4)f(c) f f(Hdt (b dyi(Q () d

and so
2 f ©)g(t)dt 2 :Zﬁ () dt +:3 ) dt Kg, dy)
PR T+ Od G d) f(c) |+

b

b d)f(c) f{ F(Ddt

w

Thus, theinequality 4. 2. 16) is valid. Yy

The following lemma will be used in recapturing the classical Steffensen's inequality (2.2.1).

Lemma 4.2.3 Let f, g:[a b]- R be integrable functions d&, b] and letf benegative and
b

nonincreasing. Further, I& ¢ g(t) ¢ and/ = N g(t) dt.Then

ri ft)dt- (b -/ & f(b Of (4.2.17)
Proof.

fi/ f(t)dt- (b-/ -a) f(b)
:,i f(t)dt Ha+/ -b)f(b)
¢ ,j’ﬂ f(t)dt #b-b) f(h)  (whereaCa + b)

=f, f®dtco,

whereata ¥ WWandfbe negative and nonincreasing.

Remark 4.2.41f we let c,=a in Corollary 4.2.2 then we haved, =a + . Further, taking
d,=d, Fgivesusc,=C; P F.Then (4.2.15) and (4.2.16) together becomes
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rj’_/ f(t)dt+ :’_ﬁf (t) dt qzab f @ o) dt
¢rj‘” f(t)dt + :ﬁ(t)dt (b £ & f(h).
Hence
25 f®)dte2 f{O)gw)dt
¢2f” f@)dt+ RHf@dt b £ 3 f(b).
Upon wsing Lemma 4.2.3, we obtain
25 fOdte2 He)g®)dt 62 F)dt.

The classical Steffensen’s inequality (2.2.1) is thus recaptured.

The following theorem isn extension to Theem 4.2.2 for theasei =1, 2,...,n and we

believe that it is a new result

Theorem 4.2.3 Let f, g :[a b]- R be integrable functions ofg, b] and let f be negative
andnonincreasing. Furthelet 0¢ g (t) @ and/ :r”jg(t)dt o ¢ ,where[c,d]E[al
fori =1,2,...,n andd;¢d, ¢.. @&, n=234,.. .

() Then
2 d dy Ch-
(n-DF FOIMd ¢ "F@dt + fgpde & F f(po
+R(G1r o) (4.2.18)
holds where,
R(G.1, o D=7 (F() -F(d) gt) dit+ “F f() H(d) @) dt .+~
+r”; (f¢) £ d,..)at) dt e (4.2.19)
(b) Then
A f©dt+ "o d . Jg‘: F(t) dt Si f (Rt (G, d,)
¢ (n -1),75 f (t)g(t) dt (4.2.20)
holds where,

1€ )= (F) F)g0) di+ [ f(c) #(0) gt) dt . +

+B (fe) TM)o0dt + /() feh)aw) dt O. (4.2.21)
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